
How many molecules of water are present in 0.25 mole of \[{{\text{H}}_{\text{2}}}{\text{O}}\]?
(A) 6.0 x \[{\text{1}}{{\text{0}}^{{\text{22}}}}\]
(B) 4.5 x \[{\text{1}}{{\text{0}}^{{\text{23}}}}\]
(C) 1.5 x \[{\text{1}}{{\text{0}}^{{\text{23}}}}\]
(D) 18 x \[{\text{1}}{{\text{0}}^{{\text{23}}}}\]
Answer
232.8k+ views
Hint: One mole of any substance has Avogadro number of atoms or molecules or ions. Avogadro number, \[{\text{}}{{\text{N}}_{\text{A}}}\]= \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}\]
Complete step by step answer: It is given that number of moles of water, \[{{\text{H}}_{\text{2}}}{\text{O}}\]= 0.25 moles.
We need to find the number of molecules present.
We know that 1 mole of \[{{\text{H}}_{\text{2}}}{\text{O}}\] contains Avogadro number of molecules.
⟹1 mole = \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules
Therefore 0.25 mole of water has x molecules of \[{{\text{H}}_{\text{2}}}{\text{O}}\].
⟹0.25 mole = x molecules
∴ x = \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}{\text{x 0}}{\text{.25 = 1}}{\text{.51 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules
Hence, 0.25 mole of water has \[{\text{1}}{\text{.51 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules.
So, the correct option is C.
Additional Information: A mole is the SI unit to measure the amount of substance. Avogadro number is defined as the number of atoms present in 12g of carbon-12. The value of Avogadro number is \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules/atoms. It is denoted as \[{\text{}}{{\text{N}}_{\text{A}}}\]. Therefore, the number of moles can also be calculated from Avogadro number.
\[{\text{Number of moles = }}\dfrac{{{\text{Number of particles}}}}{{{\text{Avogadro Number}}}}\]
Here the term particle refers to either atoms or molecules or even it can be used to refer to ions.
It must be noted that the number of moles and molecules are the two different entities.
Water molecule has a molar mass of 18 g calculated from its constituent atoms masses. It is an universally essential compound.
Note: It must be noted that the number of moles and molecules are the two different entities. Avogadro number gives the number of molecules or atoms or ions present in one mole of the substance by which we can easily find the number of molecules in 0.25 mole of \[{{\text{H}}_{\text{2}}}{\text{O}}\].
Complete step by step answer: It is given that number of moles of water, \[{{\text{H}}_{\text{2}}}{\text{O}}\]= 0.25 moles.
We need to find the number of molecules present.
We know that 1 mole of \[{{\text{H}}_{\text{2}}}{\text{O}}\] contains Avogadro number of molecules.
⟹1 mole = \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules
Therefore 0.25 mole of water has x molecules of \[{{\text{H}}_{\text{2}}}{\text{O}}\].
⟹0.25 mole = x molecules
∴ x = \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}{\text{x 0}}{\text{.25 = 1}}{\text{.51 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules
Hence, 0.25 mole of water has \[{\text{1}}{\text{.51 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules.
So, the correct option is C.
Additional Information: A mole is the SI unit to measure the amount of substance. Avogadro number is defined as the number of atoms present in 12g of carbon-12. The value of Avogadro number is \[{\text{6}}{\text{.023 x 1}}{{\text{0}}^{{\text{23}}}}\] molecules/atoms. It is denoted as \[{\text{}}{{\text{N}}_{\text{A}}}\]. Therefore, the number of moles can also be calculated from Avogadro number.
\[{\text{Number of moles = }}\dfrac{{{\text{Number of particles}}}}{{{\text{Avogadro Number}}}}\]
Here the term particle refers to either atoms or molecules or even it can be used to refer to ions.
It must be noted that the number of moles and molecules are the two different entities.
Water molecule has a molar mass of 18 g calculated from its constituent atoms masses. It is an universally essential compound.
Note: It must be noted that the number of moles and molecules are the two different entities. Avogadro number gives the number of molecules or atoms or ions present in one mole of the substance by which we can easily find the number of molecules in 0.25 mole of \[{{\text{H}}_{\text{2}}}{\text{O}}\].
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

