
Let the unit vectors a and b be perpendicular and the unit vector c be inclined at an angle $\theta $ to both a and b. If \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\], then find the values of x, y and z.
A. $x = \cos \theta ,y = \sin \theta $ and $z = \cos 2\theta $
B. $x = \sin \theta ,y = \cos \theta $ and $z = - \cos 2\theta $
C. $x = y = \cos \theta $ and ${z^2} = \cos 2\theta $
D. $x = y = \cos \theta $ and ${z^2} = - \cos 2\theta $
Answer
577.2k+ views
Hint: We will first find the dot products of $\vec a,\vec b$ and $\vec c$ with each other. Then take the \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\] and take its dot product with $\vec a,\vec b$ to reach to the values of $\alpha $ and $\beta $. Then use their values in $\vec c$ and do some modifications to get the value of z.
Complete step-by-step answer:
We know that $\vec a.\vec b = |\vec a|.|\vec b|.\cos \theta $, where $\theta $ is the angle between $\vec a$ and $\vec b$.
Therefore, $\vec a.\vec a = |\vec a|.|\vec a|.\cos {0^ \circ } = |\vec a{|^2} = 1$ (Because we are given that a is a unit vector) …….(1)
Similarly, $\vec b.\vec b = |\vec b|.|\vec b|.\cos {0^ \circ } = |\vec b{|^2} = 1$ ……………(2)
And, $\vec a.\vec b = |\vec a|.|\vec b|.\cos {90^ \circ } = 0$ (Because they are perpendicular to each other) …….(3)
$\vec a.\vec c = |\vec a|.|\vec c|.\cos \theta = \cos \theta $ (Because both the vectors a and c are unit vectors) ……….(4)
$\vec b.\vec c = |\vec b|.|\vec c|.\cos \theta = \cos \theta $ (Because both the vectors b and c are unit vectors) ……….(5)
We also know that if we have two vectors then the resultant of their cross product is always perpendicular to both the vectors.
Therefore, $\vec a$ is perpendicular to $\vec a \times \vec b$ and $\vec b$ is perpendicular to $\vec a \times \vec b$ as well.
So, $\vec a.(\vec a \times \vec b) = 0$ and $\vec b.(\vec a \times \vec b) = 0$. ………(6)
Now, we are given that \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\].
So, \[\vec b.\vec c = \vec b\{ x\vec a + y\vec b + z(\vec a \times \vec b)\} \]
This can be written as \[\vec b.\vec c = x(\vec b.\vec a) + y(\vec b.\vec b) + z\{ \vec b.(\vec a \times \vec b)\} \]
Now, using (2), (3) and (6), we will get:-
\[ \Rightarrow \vec b.\vec c = y\] ……….(7)
Now, \[\vec a.\vec c = \vec a\{ x\vec a + y\vec b + z(\vec a \times \vec b)\} \]
This can be written as \[\vec a.\vec c = x(\vec a.\vec a) + y(\vec a.\vec b) + z\{ \vec a.(\vec a \times \vec b)\} \]
Now, using (1), (3) and (6), we will get:-
\[ \Rightarrow \vec a.\vec c = x\] ……….(8).
Using (4), (5), (7) and (8), we will get:- $x = y = \cos \theta $
Putting $x = y$ in \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\], we will get:-
\[ \Rightarrow \vec c = x(\vec a + \vec b) + z(\vec a \times \vec b)\] …….(9)
Let \[\vec p = \vec a + \vec b\] and \[\vec q = \vec a \times \vec b\]. ……….(10)
Now, \[p = \vec a + \vec b\] always lies in the same place as vectors a and b and \[q = \vec a \times \vec b\] always lies in a plane perpendicular to them. Therefore, \[p = \vec a + \vec b\] and \[q = \vec a \times \vec b\] are perpendicular to each other.
Consider \[|\vec p| = |\vec a + \vec b| = \sqrt {|\vec a{|^2} + |\vec b{|^2} + 2\vec a.\vec b\cos \theta } \]
Using (1), (2) and (3), we will get:-
\[|\vec p| = \sqrt {1 + 1} = \sqrt 2 \]
\[|x\vec p| = x\left( {\sqrt {1 + 1} } \right) = \sqrt 2 x\] …………….(11)
Consider \[\vec q = \vec a \times \vec b\], so, \[|\vec q| = |\vec a|.|\vec b|\sin \theta \].
\[ \Rightarrow |\vec q| = \sin {90^ \circ } = 1\] (Using (1), (2) and the fact that the vectors a and b are perpendicular)
So, \[|z\vec q| = z\] …………..(12)
Since, \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b) = x\vec p + z\vec q\]
So, \[|\vec c| = |x\vec p + z\vec q| = \sqrt {|x\vec p{|^2} + |y\vec q{|^2} + 2|x\vec p|.|y\vec q|.\cos \varphi } \]
Since \[p = \vec a + \vec b\] and \[q = \vec a \times \vec b\] are perpendicular to each other, therefore, \[\cos \varphi = 0\].
Hence, \[|\vec c| = \sqrt {|x\vec p{|^2} + |y\vec q{|^2}} \]
Now, using (11) and (12), we will get:-
\[|\vec c| = \sqrt {2{x^2} + {z^2}} \]
Squaring both sides, we will get:-
\[{c^2} = 2{x^2} + {z^2}\]
Now, since the vector c is a unit vector. We will get:-
\[ \Rightarrow 1 = 2{x^2} + {z^2}\]
\[ \Rightarrow {z^2} = 1 - 2{x^2}\]
Now, we found out that $x = \cos \theta $.
\[ \Rightarrow {z^2} = 1 - 2{\cos ^2}\theta = - \cos 2\theta \]
So, the correct answer is “Option D”.
Additional Information: Being a vector operation, the Cross Product is extremely important in all sorts of sciences (particularly physics), engineering, and mathematics. One important example of the Cross Product is in torque or moment
Note: The students must know the difference between the dot product and cross product. The dot product results in a scalar quantity whereas the cross product results in a vector only.
Complete step-by-step answer:
We know that $\vec a.\vec b = |\vec a|.|\vec b|.\cos \theta $, where $\theta $ is the angle between $\vec a$ and $\vec b$.
Therefore, $\vec a.\vec a = |\vec a|.|\vec a|.\cos {0^ \circ } = |\vec a{|^2} = 1$ (Because we are given that a is a unit vector) …….(1)
Similarly, $\vec b.\vec b = |\vec b|.|\vec b|.\cos {0^ \circ } = |\vec b{|^2} = 1$ ……………(2)
And, $\vec a.\vec b = |\vec a|.|\vec b|.\cos {90^ \circ } = 0$ (Because they are perpendicular to each other) …….(3)
$\vec a.\vec c = |\vec a|.|\vec c|.\cos \theta = \cos \theta $ (Because both the vectors a and c are unit vectors) ……….(4)
$\vec b.\vec c = |\vec b|.|\vec c|.\cos \theta = \cos \theta $ (Because both the vectors b and c are unit vectors) ……….(5)
We also know that if we have two vectors then the resultant of their cross product is always perpendicular to both the vectors.
Therefore, $\vec a$ is perpendicular to $\vec a \times \vec b$ and $\vec b$ is perpendicular to $\vec a \times \vec b$ as well.
So, $\vec a.(\vec a \times \vec b) = 0$ and $\vec b.(\vec a \times \vec b) = 0$. ………(6)
Now, we are given that \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\].
So, \[\vec b.\vec c = \vec b\{ x\vec a + y\vec b + z(\vec a \times \vec b)\} \]
This can be written as \[\vec b.\vec c = x(\vec b.\vec a) + y(\vec b.\vec b) + z\{ \vec b.(\vec a \times \vec b)\} \]
Now, using (2), (3) and (6), we will get:-
\[ \Rightarrow \vec b.\vec c = y\] ……….(7)
Now, \[\vec a.\vec c = \vec a\{ x\vec a + y\vec b + z(\vec a \times \vec b)\} \]
This can be written as \[\vec a.\vec c = x(\vec a.\vec a) + y(\vec a.\vec b) + z\{ \vec a.(\vec a \times \vec b)\} \]
Now, using (1), (3) and (6), we will get:-
\[ \Rightarrow \vec a.\vec c = x\] ……….(8).
Using (4), (5), (7) and (8), we will get:- $x = y = \cos \theta $
Putting $x = y$ in \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b)\], we will get:-
\[ \Rightarrow \vec c = x(\vec a + \vec b) + z(\vec a \times \vec b)\] …….(9)
Let \[\vec p = \vec a + \vec b\] and \[\vec q = \vec a \times \vec b\]. ……….(10)
Now, \[p = \vec a + \vec b\] always lies in the same place as vectors a and b and \[q = \vec a \times \vec b\] always lies in a plane perpendicular to them. Therefore, \[p = \vec a + \vec b\] and \[q = \vec a \times \vec b\] are perpendicular to each other.
Consider \[|\vec p| = |\vec a + \vec b| = \sqrt {|\vec a{|^2} + |\vec b{|^2} + 2\vec a.\vec b\cos \theta } \]
Using (1), (2) and (3), we will get:-
\[|\vec p| = \sqrt {1 + 1} = \sqrt 2 \]
\[|x\vec p| = x\left( {\sqrt {1 + 1} } \right) = \sqrt 2 x\] …………….(11)
Consider \[\vec q = \vec a \times \vec b\], so, \[|\vec q| = |\vec a|.|\vec b|\sin \theta \].
\[ \Rightarrow |\vec q| = \sin {90^ \circ } = 1\] (Using (1), (2) and the fact that the vectors a and b are perpendicular)
So, \[|z\vec q| = z\] …………..(12)
Since, \[\vec c = x\vec a + y\vec b + z(\vec a \times \vec b) = x\vec p + z\vec q\]
So, \[|\vec c| = |x\vec p + z\vec q| = \sqrt {|x\vec p{|^2} + |y\vec q{|^2} + 2|x\vec p|.|y\vec q|.\cos \varphi } \]
Since \[p = \vec a + \vec b\] and \[q = \vec a \times \vec b\] are perpendicular to each other, therefore, \[\cos \varphi = 0\].
Hence, \[|\vec c| = \sqrt {|x\vec p{|^2} + |y\vec q{|^2}} \]
Now, using (11) and (12), we will get:-
\[|\vec c| = \sqrt {2{x^2} + {z^2}} \]
Squaring both sides, we will get:-
\[{c^2} = 2{x^2} + {z^2}\]
Now, since the vector c is a unit vector. We will get:-
\[ \Rightarrow 1 = 2{x^2} + {z^2}\]
\[ \Rightarrow {z^2} = 1 - 2{x^2}\]
Now, we found out that $x = \cos \theta $.
\[ \Rightarrow {z^2} = 1 - 2{\cos ^2}\theta = - \cos 2\theta \]
So, the correct answer is “Option D”.
Additional Information: Being a vector operation, the Cross Product is extremely important in all sorts of sciences (particularly physics), engineering, and mathematics. One important example of the Cross Product is in torque or moment
Note: The students must know the difference between the dot product and cross product. The dot product results in a scalar quantity whereas the cross product results in a vector only.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

