Answer
Verified
342.3k+ views
Hint: Moles is the concept that represents the number of atoms present in one mole, which is equal to $ 6.023 \times {10^{23}} $ known as Avogadro’s number. As one mole consists of Avogadro's number of atoms, by multiplying the given number of moles with Avogadro’s number gives the number of atoms.
Complete answer:
Given reaction is $ HN{O_3} + NaOH \to NaN{O_3} + {H_2}O $
One mole consists of $ 6.023 \times {10^{23}} $ number of molecules, $ 0.55 $ moles of $ HN{O_3} $ consists of $ 6.023 \times {10^{23}} \times 0.55 = 3.312 \times {10^{23}} $ molecules. As there are three oxygen atoms in one molecule of $ HN{O_3} $ .
The oxygen atoms will be $ 3 \times 3.312 \times {10^{23}} = 9.93 \times {10^{23}} $
Thus, $ 0.55 $ moles of $ HN{O_3} $ consist of $ 9.93 \times {10^{23}} $ oxygen atoms.
The number of moles is the ratio of mass to molar mass.
Given that the $ 0.365g $ of $ NaOH $ is reacted, the molar mass of $ NaOH $ is $ 40gmo{l^{ - 1}} $ .
The number of moles of $ NaOH $ will be $ \dfrac{{0.365}}{{40}} = 0.091moles $
As one mole of $ NaOH $ reacts with one mole of $ HN{O_3} $ to produce one mole of $ NaN{O_3} $
Thus, $ 0.091moles $ of $ NaOH $ produces $ 0.091moles $ of $ NaN{O_3} $
The molar mass of $ NaN{O_3} $ is $ 85gmo{l^{ - 1}} $
Thus, the mass of $ NaN{O_3} $ will be $ 0.091mol \times 85gmo{l^{ - 1}} = 0.7335g $
If $ 0.365g $ of $ NaOH $ is reacted with excess of $ HN{O_3} $ the maximum mass of $ NaN{O_3} $ which could be recovered is $ 0.7335g $
Given that the initial volume is $ 12.05c{m^3} $ with initial concentration of $ 0.2065M $ aqueous $ NaOH $ solution is titrated to the end-point by a final volume of $ 25.05c{m^3} $ of $ HN{O_3} $ solution.
Substitute these values in the formula, $ {M_1}{V_1} = {M_2}{V_2} $
$ 12.05c{m^3} \times 0.2065M = {M_2} \times 25.05c{m^3} $
Further simplification, $ {M_2} = 0.099M $
Thus, $ 12.05c{m^3} $ of a $ 0.2065M $ aqueous $ NaOH $ solution is titrated to the end-point by $ 25.05c{m^3} $ of $ HN{O_3} $ solution the concentration of the $ HN{O_3} $ will be $ 0.099M $ .
Note:
While calculating the number of moles, the molar mass should be taken exactly and the balanced chemical equation only must be considered. Based on this balanced equation only, the mole ratio is taken and according to this the moles of product can be calculated.
Complete answer:
Given reaction is $ HN{O_3} + NaOH \to NaN{O_3} + {H_2}O $
One mole consists of $ 6.023 \times {10^{23}} $ number of molecules, $ 0.55 $ moles of $ HN{O_3} $ consists of $ 6.023 \times {10^{23}} \times 0.55 = 3.312 \times {10^{23}} $ molecules. As there are three oxygen atoms in one molecule of $ HN{O_3} $ .
The oxygen atoms will be $ 3 \times 3.312 \times {10^{23}} = 9.93 \times {10^{23}} $
Thus, $ 0.55 $ moles of $ HN{O_3} $ consist of $ 9.93 \times {10^{23}} $ oxygen atoms.
The number of moles is the ratio of mass to molar mass.
Given that the $ 0.365g $ of $ NaOH $ is reacted, the molar mass of $ NaOH $ is $ 40gmo{l^{ - 1}} $ .
The number of moles of $ NaOH $ will be $ \dfrac{{0.365}}{{40}} = 0.091moles $
As one mole of $ NaOH $ reacts with one mole of $ HN{O_3} $ to produce one mole of $ NaN{O_3} $
Thus, $ 0.091moles $ of $ NaOH $ produces $ 0.091moles $ of $ NaN{O_3} $
The molar mass of $ NaN{O_3} $ is $ 85gmo{l^{ - 1}} $
Thus, the mass of $ NaN{O_3} $ will be $ 0.091mol \times 85gmo{l^{ - 1}} = 0.7335g $
If $ 0.365g $ of $ NaOH $ is reacted with excess of $ HN{O_3} $ the maximum mass of $ NaN{O_3} $ which could be recovered is $ 0.7335g $
Given that the initial volume is $ 12.05c{m^3} $ with initial concentration of $ 0.2065M $ aqueous $ NaOH $ solution is titrated to the end-point by a final volume of $ 25.05c{m^3} $ of $ HN{O_3} $ solution.
Substitute these values in the formula, $ {M_1}{V_1} = {M_2}{V_2} $
$ 12.05c{m^3} \times 0.2065M = {M_2} \times 25.05c{m^3} $
Further simplification, $ {M_2} = 0.099M $
Thus, $ 12.05c{m^3} $ of a $ 0.2065M $ aqueous $ NaOH $ solution is titrated to the end-point by $ 25.05c{m^3} $ of $ HN{O_3} $ solution the concentration of the $ HN{O_3} $ will be $ 0.099M $ .
Note:
While calculating the number of moles, the molar mass should be taken exactly and the balanced chemical equation only must be considered. Based on this balanced equation only, the mole ratio is taken and according to this the moles of product can be calculated.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell