
In the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ the sum of the coefficients of the terms of degree r is
$\left( A \right){\left( {{}^n{C_r}} \right)^3}$
$\left( B \right)3\left( {{}^n{C_r}} \right)$
$\left( C \right)\left( {{}^{3n}{C_r}} \right)$
$\left( D \right)\left( {{}^n{C_{3r}}} \right)$
Answer
232.8k+ views
Hint – In this particular question use the concept of Binomial theorem i.e. the expansion of ${\left( {1 + a} \right)^n}$ is given as
${\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$ so when we multiply three terms like this so the number of terms in the expansion is 3n terms, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
According to Binomial theorem the expansion of ${\left( {1 + a} \right)^n}$ is given as,
$ \Rightarrow {\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
So according to this Binomial theorem expand the given equation we have,
${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + {}^n{C_3}{\left( x \right)^3} + .......... + {}^n{C_r}{\left( x \right)^r} + ....... + {}^n{C_n}{\left( x \right)^n}$.... (1)
$ \Rightarrow {\left( {1 + y} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{\left( y \right)^2} + {}^n{C_3}{\left( y \right)^3} + .......... + {}^n{C_r}{\left( y \right)^r} + ....... + {}^n{C_n}{\left( y \right)^n}$.... (2)
$ \Rightarrow {\left( {1 + z} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{\left( z \right)^2} + {}^n{C_3}{\left( z \right)^3} + .......... + {}^n{C_r}{\left( z \right)^r} + ....... + {}^n{C_n}{\left( z \right)^n}$.... (3)
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
Now multiply these equations we have,
$ \Rightarrow {\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n} = \left[ {{}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{{\left( x \right)}^2} + ... + {}^n{C_r}{{\left( x \right)}^r} + ... + {}^n{C_n}{{\left( x \right)}^n}} \right]$
. \[\left[ {{}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{{\left( y \right)}^2} + ... + {}^n{C_r}{{\left( y \right)}^r} + ... + {}^n{C_n}{{\left( y \right)}^n}} \right]\]
. $\left[ {{}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{{\left( z \right)}^2} + ... + {}^n{C_r}{{\left( z \right)}^r} + ... + {}^n{C_n}{{\left( z \right)}^n}} \right]$
So as we see that in the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ each term has n terms so the total number of terms of degree r when multiplied together are 3n terms.
So the sum of the coefficient of the terms of degree r is given as
${}^{3n}{C_r}$
So this is the required answer.
Hence option (C) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that the expansion of ${\left( {1 + a} \right)^n}$ according to Binomial theorem which is all stated above so first write the expansion s above then multiply it together as above then the number of terms in the expansion of the given equation is 3n terms as every expansion has n terms in the expansion for example (a +b) when multiply by (c + d) gives 4 terms and every equation has 2 terms so the sum of the coefficient of the terms of degree r is ${}^{3n}{C_r}$.
${\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$ so when we multiply three terms like this so the number of terms in the expansion is 3n terms, so use these concepts to reach the solution of the question.
Complete step-by-step answer:
According to Binomial theorem the expansion of ${\left( {1 + a} \right)^n}$ is given as,
$ \Rightarrow {\left( {1 + a} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( a \right) + {}^n{C_2}{\left( a \right)^2} + {}^n{C_3}{\left( a \right)^3} + .......... + {}^n{C_r}{\left( a \right)^r} + ....... + {}^n{C_n}{\left( a \right)^n}$
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
So according to this Binomial theorem expand the given equation we have,
${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{\left( x \right)^2} + {}^n{C_3}{\left( x \right)^3} + .......... + {}^n{C_r}{\left( x \right)^r} + ....... + {}^n{C_n}{\left( x \right)^n}$.... (1)
$ \Rightarrow {\left( {1 + y} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{\left( y \right)^2} + {}^n{C_3}{\left( y \right)^3} + .......... + {}^n{C_r}{\left( y \right)^r} + ....... + {}^n{C_n}{\left( y \right)^n}$.... (2)
$ \Rightarrow {\left( {1 + z} \right)^n} = {}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{\left( z \right)^2} + {}^n{C_3}{\left( z \right)^3} + .......... + {}^n{C_r}{\left( z \right)^r} + ....... + {}^n{C_n}{\left( z \right)^n}$.... (3)
Where, r is the ${r^{th}}$ term in the expansion and n is the ${n^{th}}$ term in the expansion.
Now multiply these equations we have,
$ \Rightarrow {\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n} = \left[ {{}^n{C_o} + {}^n{C_1}\left( x \right) + {}^n{C_2}{{\left( x \right)}^2} + ... + {}^n{C_r}{{\left( x \right)}^r} + ... + {}^n{C_n}{{\left( x \right)}^n}} \right]$
. \[\left[ {{}^n{C_o} + {}^n{C_1}\left( y \right) + {}^n{C_2}{{\left( y \right)}^2} + ... + {}^n{C_r}{{\left( y \right)}^r} + ... + {}^n{C_n}{{\left( y \right)}^n}} \right]\]
. $\left[ {{}^n{C_o} + {}^n{C_1}\left( z \right) + {}^n{C_2}{{\left( z \right)}^2} + ... + {}^n{C_r}{{\left( z \right)}^r} + ... + {}^n{C_n}{{\left( z \right)}^n}} \right]$
So as we see that in the expansion of ${\left( {1 + x} \right)^n}.{\left( {1 + y} \right)^n}.{\left( {1 + z} \right)^n}$ each term has n terms so the total number of terms of degree r when multiplied together are 3n terms.
So the sum of the coefficient of the terms of degree r is given as
${}^{3n}{C_r}$
So this is the required answer.
Hence option (C) is the correct answer.
Note – Whenever we face such types of question the key concept we have to remember is that the expansion of ${\left( {1 + a} \right)^n}$ according to Binomial theorem which is all stated above so first write the expansion s above then multiply it together as above then the number of terms in the expansion of the given equation is 3n terms as every expansion has n terms in the expansion for example (a +b) when multiply by (c + d) gives 4 terms and every equation has 2 terms so the sum of the coefficient of the terms of degree r is ${}^{3n}{C_r}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

