
In a triangle $\vartriangle ABC$, if $a=2,b=4$and $\angle C={{60}^{0}}$ then $\angle A$ and $\angle B$ are equal to,
A. \[{{90}^{0}},{{30}^{0}}\]
B. \[{{60}^{0}},{{60}^{0}}\]
C. \[{{30}^{0}},{{90}^{0}}\]
D. \[{{60}^{0}},{{45}^{0}}\]
Answer
232.8k+ views
Hint: To solve this question, we will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]. We will substitute the values of the sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and find the value of $c$. Then we will use sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ to derive the value of the angles $\angle A$ and $\angle B$.
Formula used:
Law of sine:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule:
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]
Complete step-by-step solution:
We have been given a triangle $\vartriangle ABC$ having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and we have to find the value of angles $\angle A$ and $\angle B$.
We will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]and substitute the given values of sides and angles and derive the value of side length $c$.
\[\begin{align}
& {{c}^{2}}={{2}^{2}}+{{4}^{2}}-2(2\times 4)\cos {{60}^{0}} \\
& {{c}^{2}}=4+16-16\times \frac{1}{2} \\
& {{c}^{2}}=12 \\
& c=2\sqrt{3}
\end{align}\]
We will now use Law of sine $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$to find the angles $\angle A$ and $\angle B$.
We will first take $\frac{a}{\sin A}=\frac{c}{\sin C}$ to find the angle $\angle A$.
Now we will substitute the value of the sides $a,c$ and angle $\angle C={{60}^{0}}$ in $\frac{a}{\sin A}=\frac{c}{\sin C}$.
$\begin{align}
& \frac{2}{\sin A}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{1}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin A=\frac{1}{2} \\
& \sin A=\sin {{30}^{0}} \\
& A={{30}^{0}}
\end{align}$
Now we will take $\frac{b}{\sin B}=\frac{c}{\sin C}$ to find the value of angle $\angle B$.
We will now substitute the value of the sides $b,c$ and angle $\angle C={{60}^{0}}$ in $\frac{b}{\sin B}=\frac{c}{\sin C}$.
\[\begin{align}
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin B=1
\end{align}\]
The value $1$ of sine is at angle $\sin {{90}^{0}}$.
$\begin{align}
& \sin B=\sin {{90}^{0}} \\
& B={{90}^{0}} \\
\end{align}$
The value of the angles $\angle A$ and $\angle B$ of triangle having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$are $A={{30}^{0}}$ and \[B={{90}^{0}}\]. Hence the correct option is (C).
Note:
After deriving any one of the angles $\angle A$ and $\angle B$ using sine law we could have also used angle sum property to find the third angle. According to that property, the sum of all the angles is equal to ${{180}^{0}}$. As in the solution above after calculating the value of the angle $A={{30}^{0}}$ we used sine law.
Here we will find angle $\angle B$ using angle sum property.
$\begin{align}
& A+B+C={{180}^{0}} \\
& 30+B+60={{180}^{0}} \\
& B={{90}^{0}}
\end{align}$
Formula used:
Law of sine:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule:
\[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]
Complete step-by-step solution:
We have been given a triangle $\vartriangle ABC$ having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$ and we have to find the value of angles $\angle A$ and $\angle B$.
We will use cosine rule \[{{c}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\cos C\]and substitute the given values of sides and angles and derive the value of side length $c$.
\[\begin{align}
& {{c}^{2}}={{2}^{2}}+{{4}^{2}}-2(2\times 4)\cos {{60}^{0}} \\
& {{c}^{2}}=4+16-16\times \frac{1}{2} \\
& {{c}^{2}}=12 \\
& c=2\sqrt{3}
\end{align}\]
We will now use Law of sine $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$to find the angles $\angle A$ and $\angle B$.
We will first take $\frac{a}{\sin A}=\frac{c}{\sin C}$ to find the angle $\angle A$.
Now we will substitute the value of the sides $a,c$ and angle $\angle C={{60}^{0}}$ in $\frac{a}{\sin A}=\frac{c}{\sin C}$.
$\begin{align}
& \frac{2}{\sin A}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{1}{\sin A}=\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin A=\frac{1}{2} \\
& \sin A=\sin {{30}^{0}} \\
& A={{30}^{0}}
\end{align}$
Now we will take $\frac{b}{\sin B}=\frac{c}{\sin C}$ to find the value of angle $\angle B$.
We will now substitute the value of the sides $b,c$ and angle $\angle C={{60}^{0}}$ in $\frac{b}{\sin B}=\frac{c}{\sin C}$.
\[\begin{align}
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\sin {{60}^{0}}} \\
& \frac{4}{\sin B}=\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}} \\
& \sin B=1
\end{align}\]
The value $1$ of sine is at angle $\sin {{90}^{0}}$.
$\begin{align}
& \sin B=\sin {{90}^{0}} \\
& B={{90}^{0}} \\
\end{align}$
The value of the angles $\angle A$ and $\angle B$ of triangle having sides $a=2,b=4$ and angle $\angle C={{60}^{0}}$are $A={{30}^{0}}$ and \[B={{90}^{0}}\]. Hence the correct option is (C).
Note:
After deriving any one of the angles $\angle A$ and $\angle B$ using sine law we could have also used angle sum property to find the third angle. According to that property, the sum of all the angles is equal to ${{180}^{0}}$. As in the solution above after calculating the value of the angle $A={{30}^{0}}$ we used sine law.
Here we will find angle $\angle B$ using angle sum property.
$\begin{align}
& A+B+C={{180}^{0}} \\
& 30+B+60={{180}^{0}} \\
& B={{90}^{0}}
\end{align}$
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

