
In a triangle $ABC$, if $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$. Then find which of the following statements is true.
A. $a, c$, and $b$ are in AP.
B. $a, b$, and $c$ are in GP.
C. $b, a$, and $c$ are in AP.
D. $a, b$, and $c$ are in AP.
Answer
232.8k+ views
Hint: To calculate half angles, use the tangent of a trigonometric function and its half angle formula. Substituting the given values after multiplying the half angles To arrive at the required answer, simplify the equation in the end and check the common ratio or difference between $a, $b, and $c$.
Formula Used:
The half angle formula of tan for a triangle with sides $a, b$, and $c$, and the semi-perimeter $s$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan\dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Complete step by step solution:
Given: In a triangle $ABC$, $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$.
Let $s$ be the semi-perimeter and $a, b$, and $c$ be the lengths of opposite sides of the angles $A,B$, and $C$ respectively of a triangle $ABC$.
Apply the half angle formula to calculate the values of $\tan\dfrac{A}{2}$, and $\tan\dfrac{C}{2}$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $ $.....\left( 1 \right)$
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ $.....\left( 2 \right)$
Now multiply equation $\left( 1 \right)$ by equation $\left( 2 \right)$.
$\tan\dfrac{A}{2} \times \tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Substitute the given values of the half angles.
$\dfrac{5}{6} \times \dfrac{2}{5} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}} \times \dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ [Since $\sqrt a \times \sqrt b = \sqrt {ab} $]
Cancel out the common terms from numerator and denominator.
$\dfrac{1}{3} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - b} \right)}}{{s \times s}}} $
$ \Rightarrow $$\dfrac{1}{3} = \sqrt {\dfrac{{{{\left( {s - b} \right)}^2}}}{{{s^2}}}} $
$ \Rightarrow \dfrac{1}{3} = \dfrac{{\left( {s - b} \right)}}{s}$
Simplify the above equation.
$s = 3\left( {s - b} \right)$
$ \Rightarrow s = 3s - 3b$
$ \Rightarrow 2s = 3b$
Substitute the value of the semi-perimeter in the above equation.
$2\left( {\dfrac{{a + b + c}}{2}} \right) = 3b$
$ \Rightarrow a + b + c = 3b$
$ \Rightarrow a + c = 2b$
Since the sum of $a$ and $c$ is equal to the two times $b$.
This is the condition of the three numbers in arithmetic progression.
So, $a, b$, and $c$ are in arithmetic progression.
Option ‘D’ is correct
Note: An arithmetic series is a sequence in which each consecutive element is obtained by adding or subtracting the preceding element by a constant. The constant value is called a common difference.
The general form of an arithmetic series is $a, a + d, a + 2d, a + 3d,...$. Where $a$ is the first term and $d$ is a common difference.
If three numbers $x, y, z$ are in arithmetic progression, then $x + z = 2y$.
Formula Used:
The half angle formula of tan for a triangle with sides $a, b$, and $c$, and the semi-perimeter $s$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $
$\tan\dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{s\left( {s - b} \right)}}} $
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Complete step by step solution:
Given: In a triangle $ABC$, $\tan\dfrac{A}{2} = \dfrac{5}{6}$, and $\tan\dfrac{C}{2} = \dfrac{2}{5}$.
Let $s$ be the semi-perimeter and $a, b$, and $c$ be the lengths of opposite sides of the angles $A,B$, and $C$ respectively of a triangle $ABC$.
Apply the half angle formula to calculate the values of $\tan\dfrac{A}{2}$, and $\tan\dfrac{C}{2}$.
$\tan\dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} $ $.....\left( 1 \right)$
$\tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ $.....\left( 2 \right)$
Now multiply equation $\left( 1 \right)$ by equation $\left( 2 \right)$.
$\tan\dfrac{A}{2} \times \tan\dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $
Substitute the given values of the half angles.
$\dfrac{5}{6} \times \dfrac{2}{5} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{s\left( {s - a} \right)}} \times \dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} $ [Since $\sqrt a \times \sqrt b = \sqrt {ab} $]
Cancel out the common terms from numerator and denominator.
$\dfrac{1}{3} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - b} \right)}}{{s \times s}}} $
$ \Rightarrow $$\dfrac{1}{3} = \sqrt {\dfrac{{{{\left( {s - b} \right)}^2}}}{{{s^2}}}} $
$ \Rightarrow \dfrac{1}{3} = \dfrac{{\left( {s - b} \right)}}{s}$
Simplify the above equation.
$s = 3\left( {s - b} \right)$
$ \Rightarrow s = 3s - 3b$
$ \Rightarrow 2s = 3b$
Substitute the value of the semi-perimeter in the above equation.
$2\left( {\dfrac{{a + b + c}}{2}} \right) = 3b$
$ \Rightarrow a + b + c = 3b$
$ \Rightarrow a + c = 2b$
Since the sum of $a$ and $c$ is equal to the two times $b$.
This is the condition of the three numbers in arithmetic progression.
So, $a, b$, and $c$ are in arithmetic progression.
Option ‘D’ is correct
Note: An arithmetic series is a sequence in which each consecutive element is obtained by adding or subtracting the preceding element by a constant. The constant value is called a common difference.
The general form of an arithmetic series is $a, a + d, a + 2d, a + 3d,...$. Where $a$ is the first term and $d$ is a common difference.
If three numbers $x, y, z$ are in arithmetic progression, then $x + z = 2y$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

