
If we have an expression as \[\alpha ={}^{m}{{C}_{2}}\], then \[{}^{\alpha }{{C}_{2}}\] is equal to: -
(a) \[{}^{m+1}{{C}_{4}}\]
(b) \[{}^{m-1}{{C}_{4}}\]
(c) \[3.{}^{m+2}{{C}_{4}}\]
(d) \[3.{}^{m+1}{{C}_{4}}\]
Answer
233.1k+ views
Hint: Find the value of \[\alpha \] in terms of m by expanding the relation \[\alpha ={}^{m}{{C}_{2}}\], using the formula given as: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, expand the relation: - \[{}^{\alpha }{{C}_{2}}\] by using the same formula and substitute the value of \[\alpha \] found in terms of m earlier. Simplify the expression to get the answer.
Complete step-by-step solution
Here, we have been provided with the relation \[\alpha ={}^{m}{{C}_{2}}\] and then find the value of \[{}^{\alpha }{{C}_{2}}\].
Now, we know that \[{}^{n}{{C}_{r}}\] is expanded by the formula: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], so applying this formula, we get,
\[\begin{align}
& \Rightarrow \alpha ={}^{m}{{C}_{2}} \\
& \Rightarrow \alpha =\dfrac{m!}{2!\left( m-2 \right)!} \\
\end{align}\]
Now, m! can be written as \[m!=m\times \left( m-1 \right)\times \left( m-2 \right)!\], so we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)\left( m-2 \right)!}{2!\left( m-2 \right)!}\]
Cancelling \[\left( m-2 \right)!\], we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2!}\]
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2}\left( \because 2!=2\times 1=2 \right)\] - (1)
Now, applying the same formula to expand \[{}^{\alpha }{{C}_{2}}\], we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha !}{2!\left( \alpha -2 \right)!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha \left( \alpha -1 \right)}{2} \\
\end{align}\]
Substituting the value of \[\alpha \] from equation (1) in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\dfrac{m\left( m-1 \right)}{2}\left( \dfrac{m\left( m-1 \right)}{2}-1 \right)}{2} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-1 \right)-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-m-2 \right)}{8} \\
\end{align}\]
Now, splitting the middle term of the expression \[{{m}^{2}}-m-2\] in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-2m+m-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-2 \right)+1\left( m-2 \right) \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m+1 \right)\left( m-2 \right)}{8} \\
\end{align}\]
The numerator in the above relation can be arranged as: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)}{8}\]
Now, multiplying both the numerator and denominator of the above expression with (m – 3) (m – 4) (m – 5)…….. 3 . 2 . 1, we get,
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)\left( m-3 \right)......3.2.1}{8\times \left( m-3 \right)\left( m-4 \right)\left( m-5 \right)......3.2.1}\]
Now, we have the numerator as the multiplication of terms starting from (m + 1) and ending at 1 and the denominator as the multiplication of terms starting from (m – 3) and ending at 1, so they can be written as factorial like: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\]
Now, multiplying the numerator and the denominator with 4!, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\times \dfrac{4!}{4!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times \dfrac{\left( m+1 \right)!}{4!\times \left( m-3 \right)!} \\
\end{align}\]
This can be written as: -
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=3.{}^{m+1}{{C}_{4}} \\
\end{align}\]
Hence, option (d) is the correct answer.
Note: You must remember the expansion formula of the combination expression \[{}^{n}{{C}_{r}}\] to solve the above question. Note that we must arrange the terms properly so that a particular arrangement can be formed and the expression can be written as the factorial of different terms. You may note that we can easily get the correct option by substituting m = 5 in the expression and the options. But this process can only be applied if the options are present just like in the above question.
Complete step-by-step solution
Here, we have been provided with the relation \[\alpha ={}^{m}{{C}_{2}}\] and then find the value of \[{}^{\alpha }{{C}_{2}}\].
Now, we know that \[{}^{n}{{C}_{r}}\] is expanded by the formula: - \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\], so applying this formula, we get,
\[\begin{align}
& \Rightarrow \alpha ={}^{m}{{C}_{2}} \\
& \Rightarrow \alpha =\dfrac{m!}{2!\left( m-2 \right)!} \\
\end{align}\]
Now, m! can be written as \[m!=m\times \left( m-1 \right)\times \left( m-2 \right)!\], so we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)\left( m-2 \right)!}{2!\left( m-2 \right)!}\]
Cancelling \[\left( m-2 \right)!\], we get,
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2!}\]
\[\Rightarrow \alpha =\dfrac{m\left( m-1 \right)}{2}\left( \because 2!=2\times 1=2 \right)\] - (1)
Now, applying the same formula to expand \[{}^{\alpha }{{C}_{2}}\], we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha !}{2!\left( \alpha -2 \right)!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\alpha \left( \alpha -1 \right)}{2} \\
\end{align}\]
Substituting the value of \[\alpha \] from equation (1) in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\dfrac{m\left( m-1 \right)}{2}\left( \dfrac{m\left( m-1 \right)}{2}-1 \right)}{2} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-1 \right)-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-m-2 \right)}{8} \\
\end{align}\]
Now, splitting the middle term of the expression \[{{m}^{2}}-m-2\] in the above relation, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( {{m}^{2}}-2m+m-2 \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m\left( m-2 \right)+1\left( m-2 \right) \right)}{8} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{m\left( m-1 \right)\left( m+1 \right)\left( m-2 \right)}{8} \\
\end{align}\]
The numerator in the above relation can be arranged as: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)}{8}\]
Now, multiplying both the numerator and denominator of the above expression with (m – 3) (m – 4) (m – 5)…….. 3 . 2 . 1, we get,
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)m\left( m-1 \right)\left( m-2 \right)\left( m-3 \right)......3.2.1}{8\times \left( m-3 \right)\left( m-4 \right)\left( m-5 \right)......3.2.1}\]
Now, we have the numerator as the multiplication of terms starting from (m + 1) and ending at 1 and the denominator as the multiplication of terms starting from (m – 3) and ending at 1, so they can be written as factorial like: -
\[\Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\]
Now, multiplying the numerator and the denominator with 4!, we get,
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{\left( m+1 \right)!}{8\left( m-3 \right)!}\times \dfrac{4!}{4!} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times \dfrac{\left( m+1 \right)!}{4!\times \left( m-3 \right)!} \\
\end{align}\]
This can be written as: -
\[\begin{align}
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4!}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=\dfrac{4\times 3\times 2\times 1}{8}\times {}^{m+1}{{C}_{4}} \\
& \Rightarrow {}^{\alpha }{{C}_{2}}=3.{}^{m+1}{{C}_{4}} \\
\end{align}\]
Hence, option (d) is the correct answer.
Note: You must remember the expansion formula of the combination expression \[{}^{n}{{C}_{r}}\] to solve the above question. Note that we must arrange the terms properly so that a particular arrangement can be formed and the expression can be written as the factorial of different terms. You may note that we can easily get the correct option by substituting m = 5 in the expression and the options. But this process can only be applied if the options are present just like in the above question.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

