
If the co-ordinates of the points P, Q, R, S be \[\left( {1,2,3} \right),\left( {4,5,7} \right),\left( { - 4,3, - 6} \right)\] and $\left( {2,0,2} \right)$ then
A. PQ $\parallel $ RS
B. PQ $ \bot $ RS
C. PQ $ = $ RS
D. None of these
Answer
232.8k+ views
Hint: In order to solve this type of question we will use the formula of finding the angle between the lines. First we will find the direction ratios of both the lines separately then we will substitute the values of the direction ratios obtained in the formula $\cos \theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|$ for finding the angle between the lines to get the correct answer.
Formula used:
Angle between a pair of lines having direction ratios ${a_1},{b_1},{c_1}$ and ${a_2},{b_2},{c_2}$ is given by,
$\cos \theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|$
Direction ratio of line passing through points $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is calculated by $\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$.
Complete step by step solution:
We will first calculate the direction ratios of both the lines PQ and RS separately. We know that direction ratios of the line passing through points $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is calculated by $\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$.
Direction ratio of line PQ passing through points $P\left( {1,2,3} \right)$ and $Q\left( {4,5,7} \right)$.
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {4 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right) = 3,3,4$
$\therefore {a_1} = 3,\;{b_1} = 3,\;{c_1} = 4$ ………………..equation $\left( 1 \right)$
Direction ratio of line RS passing through points $R\left( { - 4,3, - 6} \right)$ and $S\left( {2,0,2} \right)$.
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {2 - \left( { - 4} \right)} \right),\left( {0 - 3} \right),\left( {2 - \left( { - 6} \right)} \right) = 6, - 3,8$
$\therefore {a_2} = 6,\;{b_2} = - 3,\;{c_2} = 8$ ………………..equation $\left( 2 \right)$
Substituting equations $\left( 1 \right)$ and $\left( 2 \right)$ in angle formula.
$\cos \theta = \left| {\dfrac{{\left( {3 \times 6} \right) + \left( {3 \times \left( { - 3} \right)} \right) + \left( {4 \times 8} \right)}}{{\sqrt {{3^2} + {3^2} + {4^2}} \sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {8^2}} }}} \right|$
Solving it,
$\cos \theta = \left| {\dfrac{{18 - 9 + 32}}{{\sqrt {34} \sqrt {109} }}} \right|$
$\cos \theta = \left| {\dfrac{{41}}{{\sqrt {3706} }}} \right|$
Finding $\theta ,$
$\theta = {\cos ^{ - 1}}\left| {\dfrac{{41}}{{\sqrt {3706} }}} \right|$
$\theta = 0.832$
Thus, we conclude that neither PQ $\parallel $ RS nor PQ $ \bot $ RS. Also, PQ $ \ne $ RS.
$\therefore $ The correct option is (D).
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Formula used:
Angle between a pair of lines having direction ratios ${a_1},{b_1},{c_1}$ and ${a_2},{b_2},{c_2}$ is given by,
$\cos \theta = \left| {\dfrac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} \sqrt {{a_2}^2 + {b_2}^2 + {c_2}^2} }}} \right|$
Direction ratio of line passing through points $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is calculated by $\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$.
Complete step by step solution:
We will first calculate the direction ratios of both the lines PQ and RS separately. We know that direction ratios of the line passing through points $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is calculated by $\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$.
Direction ratio of line PQ passing through points $P\left( {1,2,3} \right)$ and $Q\left( {4,5,7} \right)$.
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {4 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right) = 3,3,4$
$\therefore {a_1} = 3,\;{b_1} = 3,\;{c_1} = 4$ ………………..equation $\left( 1 \right)$
Direction ratio of line RS passing through points $R\left( { - 4,3, - 6} \right)$ and $S\left( {2,0,2} \right)$.
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {2 - \left( { - 4} \right)} \right),\left( {0 - 3} \right),\left( {2 - \left( { - 6} \right)} \right) = 6, - 3,8$
$\therefore {a_2} = 6,\;{b_2} = - 3,\;{c_2} = 8$ ………………..equation $\left( 2 \right)$
Substituting equations $\left( 1 \right)$ and $\left( 2 \right)$ in angle formula.
$\cos \theta = \left| {\dfrac{{\left( {3 \times 6} \right) + \left( {3 \times \left( { - 3} \right)} \right) + \left( {4 \times 8} \right)}}{{\sqrt {{3^2} + {3^2} + {4^2}} \sqrt {{6^2} + {{\left( { - 3} \right)}^2} + {8^2}} }}} \right|$
Solving it,
$\cos \theta = \left| {\dfrac{{18 - 9 + 32}}{{\sqrt {34} \sqrt {109} }}} \right|$
$\cos \theta = \left| {\dfrac{{41}}{{\sqrt {3706} }}} \right|$
Finding $\theta ,$
$\theta = {\cos ^{ - 1}}\left| {\dfrac{{41}}{{\sqrt {3706} }}} \right|$
$\theta = 0.832$
Thus, we conclude that neither PQ $\parallel $ RS nor PQ $ \bot $ RS. Also, PQ $ \ne $ RS.
$\therefore $ The correct option is (D).
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

