
If the coordinates of the point A, B, C and D be $\left( {2,3, - 1} \right),\left( {3,5, - 3} \right),\left( {1,2,3} \right)$ and $\left( {3,5,7} \right)$ respectively, then the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is
A. $0$
B. $1$
C. $2$
D. $3$
Answer
232.8k+ views
Hint: In order to solve this type of question, we will first find the direction ratios of $\overrightarrow {AB} $ and $\overrightarrow {CD} $ by substituting the values obtained. Next, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $ to find the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $. Again, we will substitute the values obtained above to get the correct answer.
Formula used:
Direction ratios of the line passing through a line $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is given by,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Complete step by step solution:
For $\overrightarrow {AB} $,
$A\left( {2,3, - 1} \right)$ and $B\left( {3,5, - 3} \right)$
Direction ratios of $\overrightarrow {AB} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 2} \right),\left( {5 - 3} \right),\left( { - 3 - \left( { - 1} \right)} \right)$
$\therefore {a_1} = 1,\;{b_1} = 2,\;{c_1} = - 2$ ………………..equation $\left( 1 \right)$
$\overrightarrow {AB} = \;\widehat i + 2\widehat j - 2\widehat k$
For $\overrightarrow {CD} $,
$C\left( {1,2,3} \right)$ and $D\left( {3,5,7} \right)$
Direction ratios of $\overrightarrow {CD} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right)$
$\therefore {a_2} = 2,\;{b_2} = 3,\;{c_2} = 4$ ………………..equation $\left( 2 \right)$
$\overrightarrow {CD} = 2\widehat i + 3\widehat j + 4\widehat k$
Now, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $,
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right) - \left( 2 \right)\left( 4 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = 2 + 6 - 8$
$\overrightarrow {AB} .\overrightarrow {CD} = 0$
Thus, the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is 0.
$\therefore $ The correct option is A.
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Formula used:
Direction ratios of the line passing through a line $A\left( {{x_1},{y_1},{z_1}} \right)$ and $B\left( {{x_2},{y_2},{z_2}} \right)$ is given by,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Complete step by step solution:
For $\overrightarrow {AB} $,
$A\left( {2,3, - 1} \right)$ and $B\left( {3,5, - 3} \right)$
Direction ratios of $\overrightarrow {AB} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 2} \right),\left( {5 - 3} \right),\left( { - 3 - \left( { - 1} \right)} \right)$
$\therefore {a_1} = 1,\;{b_1} = 2,\;{c_1} = - 2$ ………………..equation $\left( 1 \right)$
$\overrightarrow {AB} = \;\widehat i + 2\widehat j - 2\widehat k$
For $\overrightarrow {CD} $,
$C\left( {1,2,3} \right)$ and $D\left( {3,5,7} \right)$
Direction ratios of $\overrightarrow {CD} $,
$\left( {{x_2} - {x_1}} \right),\left( {{y_2} - {y_1}} \right),\left( {{z_2} - {z_1}} \right)$
Substituting the values,
$\left( {3 - 1} \right),\left( {5 - 2} \right),\left( {7 - 3} \right)$
$\therefore {a_2} = 2,\;{b_2} = 3,\;{c_2} = 4$ ………………..equation $\left( 2 \right)$
$\overrightarrow {CD} = 2\widehat i + 3\widehat j + 4\widehat k$
Now, we will find the dot product of $\overrightarrow {AB} $ and $\overrightarrow {CD} $,
$\overrightarrow {AB} .\overrightarrow {CD} = \left( {{a_2}} \right)\left( {{a_1}} \right) + \left( {{b_2}} \right)\left( {{b_1}} \right) + \left( {{c_2}} \right)\left( {{c_1}} \right)$
Substituting the values from equation $\left( 1 \right)$ and $\left( 2 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = \left( 2 \right)\left( 1 \right) + \left( 3 \right)\left( 2 \right) - \left( 2 \right)\left( 4 \right)$
$\overrightarrow {AB} .\overrightarrow {CD} = 2 + 6 - 8$
$\overrightarrow {AB} .\overrightarrow {CD} = 0$
Thus, the projection of $\overrightarrow {AB} $ on $\overrightarrow {CD} $ is 0.
$\therefore $ The correct option is A.
Note: The direction ratios are very helpful in finding the relationship between two lines or vectors. The direction ratios can be used to find the direction cosines of a line or the angle between the two lines. The direction ratios are also useful in finding the dot product between the two vectors.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

