If \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], then
\[\dfrac{dy}{dx}\] is equal to
(a) \[\dfrac{1}{x}\]
(b) \[\dfrac{1}{2}\]
(c) \[\dfrac{-1}{2}\]
(d) \[\dfrac{-1}{x}\]
(e) \[1\]
Last updated date: 24th Mar 2023
•
Total views: 307.8k
•
Views today: 4.88k
Answer
307.8k+ views
To find the value of \[\dfrac{dy}{dx}\], first evaluate \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then use the formula \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\] to get the value of \[\dfrac{dy}{dx}\].
Complete step-by-step answer:
We have the parametric equations \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We have to evaluate \[\dfrac{dy}{dx}\].
We will first evaluate the values of \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then, we will rearrange the terms such that \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\]to get the value of \[\dfrac{dy}{dx}\].
We will begin by finding the value of \[\dfrac{dx}{dt}\]. We have the parametric equation \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right).....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \sin x \right)\], we will multiply and divide the equation by \[dx\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}\].
We know that the first derivative of the function \[y=\sin x\] is \[\dfrac{dy}{dx}=\cos x\].
Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}=\cos x\dfrac{dx}{dt}\].
We know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. So, we can write \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\] in the above equation, we get \[\cos x=\sqrt{1-{{\sin }^{2}}x}=\sqrt{1-{{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{{{\left( 1+{{t}^{2}} \right)}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}+2{{t}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}-2{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{{{\left( 1-{{t}^{2}} \right)}^{2}}}}{1+{{t}^{2}}}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \sin x \right)=\cos x\dfrac{dx}{dt}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}.....\left( 2 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1+{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( 2t \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2t+2{{t}^{2}}-4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.....\left( 3 \right)\]. Substituting equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)\left( 1-{{t}^{2}} \right)}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 4 \right)\].
We will now find the value of \[\dfrac{dy}{dt}\]. We have the parametric equation \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right).....\left( 5 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \tan y \right)\], we will multiply and divide the equation by \[dy\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}\].
We know that the first derivative of the function \[y=\tan x\] is \[\dfrac{dy}{dx}={{\sec }^{2}}x\].
Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}={{\sec }^{2}}y\dfrac{dy}{dt}\].
We know that \[1+{{\tan }^{2}}y={{\sec }^{2}}y\].
Substituting \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\] in the above equation, we get \[{{\sec }^{2}}y=1+{{\tan }^{2}}y=1+{{\left( \dfrac{2t}{1-{{t}^{2}}} \right)}^{2}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \tan y \right)={{\sec }^{2}}y\dfrac{dy}{dt}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}.....\left( 6 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1-{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( -2t \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.....\left( 7 \right)\]. Substituting equation \[\left( 6 \right),\left( 7 \right)\]in equation \[\left( 5 \right)\], we get \[\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dy}{dt}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 8 \right)\].
Dividing equation \[\left( 8 \right)\] by equation \[\left( 4 \right)\], we get \[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}\].
Simplifying the above expression, we have \[\dfrac{dy}{dx}=1\].
Hence, given \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], the value of \[\dfrac{dy}{dx}\]is \[1\], which is option (e).
Note: We can also solve this question by simplifying the expression using inverse trigonometric functions. For \[\left| t \right|<1\], we can write \[x={{\sin }^{-1}}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=2{{\tan }^{-1}}t,y={{\tan }^{-1}}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=2{{\tan }^{-1}}t\] and thus, we can write \[x=y\] and differentiate it to find the derivative.
Complete step-by-step answer:
We have the parametric equations \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We have to evaluate \[\dfrac{dy}{dx}\].
We will first evaluate the values of \[\dfrac{dy}{dt}\]and \[\dfrac{dx}{dt}\]. Then, we will rearrange the terms such that \[\dfrac{dy}{dx}=\dfrac{dy}{dt}\times \dfrac{1}{\dfrac{dx}{dt}}\]to get the value of \[\dfrac{dy}{dx}\].
We will begin by finding the value of \[\dfrac{dx}{dt}\]. We have the parametric equation \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right).....\left( 1 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \sin x \right)\], we will multiply and divide the equation by \[dx\]. Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}\].
We know that the first derivative of the function \[y=\sin x\] is \[\dfrac{dy}{dx}=\cos x\].
Thus, we have \[\dfrac{d}{dt}\left( \sin x \right)=\dfrac{d}{dx}\left( \sin x \right)\times \dfrac{dx}{dt}=\cos x\dfrac{dx}{dt}\].
We know that \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\]. So, we can write \[\cos x=\sqrt{1-{{\sin }^{2}}x}\].
Substituting \[\sin x=\dfrac{2t}{1+{{t}^{2}}}\] in the above equation, we get \[\cos x=\sqrt{1-{{\sin }^{2}}x}=\sqrt{1-{{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{{{\left( 1+{{t}^{2}} \right)}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}+2{{t}^{2}}-4{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{1+{{t}^{4}}-2{{t}^{2}}}}{1+{{t}^{2}}}=\dfrac{\sqrt{{{\left( 1-{{t}^{2}} \right)}^{2}}}}{1+{{t}^{2}}}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \sin x \right)=\cos x\dfrac{dx}{dt}=\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}.....\left( 2 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=\dfrac{\left( 1+{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1+{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1+{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( 2t \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2t+2{{t}^{2}}-4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}.....\left( 3 \right)\]. Substituting equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we get \[\dfrac{1-{{t}^{2}}}{1+{{t}^{2}}}\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dx}{dt}=\dfrac{2\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)\left( 1-{{t}^{2}} \right)}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 4 \right)\].
We will now find the value of \[\dfrac{dy}{dt}\]. We have the parametric equation \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\]. We will differentiate the given equation on both sides with respect to the variable \[t\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right).....\left( 5 \right)\].
To find the value of \[\dfrac{d}{dt}\left( \tan y \right)\], we will multiply and divide the equation by \[dy\]. Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}\].
We know that the first derivative of the function \[y=\tan x\] is \[\dfrac{dy}{dx}={{\sec }^{2}}x\].
Thus, we have \[\dfrac{d}{dt}\left( \tan y \right)=\dfrac{d}{dy}\left( \tan y \right)\times \dfrac{dy}{dt}={{\sec }^{2}}y\dfrac{dy}{dt}\].
We know that \[1+{{\tan }^{2}}y={{\sec }^{2}}y\].
Substituting \[\tan y=\dfrac{2t}{1-{{t}^{2}}}\] in the above equation, we get \[{{\sec }^{2}}y=1+{{\tan }^{2}}y=1+{{\left( \dfrac{2t}{1-{{t}^{2}}} \right)}^{2}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\]
Hence, we have \[\dfrac{d}{dt}\left( \tan y \right)={{\sec }^{2}}y\dfrac{dy}{dt}=\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}.....\left( 6 \right)\].
Now, we will evaluate the value of \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)\]. To do so, we will use quotient rule of differentiation which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\] then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
We know that derivative of any function of the form \[y=a{{x}^{n}}+b\] is \[\dfrac{dy}{dx}=an{{x}^{n-1}}\].
Thus, we have \[\dfrac{d}{dt}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=\dfrac{\left( 1-{{t}^{2}} \right)\dfrac{d}{dt}\left( 2t \right)-2t\dfrac{d}{dt}\left( 1-{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{\left( 1-{{t}^{2}} \right)\left( 2 \right)-\left( 2t \right)\left( -2t \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}.....\left( 7 \right)\]. Substituting equation \[\left( 6 \right),\left( 7 \right)\]in equation \[\left( 5 \right)\], we get \[\dfrac{{{\left( 1+{{t}^{2}} \right)}^{2}}}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\dfrac{dy}{dt}=\dfrac{2\left( 1+{{t}^{2}} \right)}{{{\left( 1-{{t}^{2}} \right)}^{2}}}\].
Simplifying the above equation, we have \[\dfrac{dy}{dt}=\dfrac{2}{\left( 1+{{t}^{2}} \right)}.....\left( 8 \right)\].
Dividing equation \[\left( 8 \right)\] by equation \[\left( 4 \right)\], we get \[\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}{\dfrac{2}{\left( 1+{{t}^{2}} \right)}}\].
Simplifying the above expression, we have \[\dfrac{dy}{dx}=1\].
Hence, given \[\left| t \right|<1,\sin x=\dfrac{2t}{1+{{t}^{2}}},\tan y=\dfrac{2t}{1-{{t}^{2}}}\], the value of \[\dfrac{dy}{dx}\]is \[1\], which is option (e).
Note: We can also solve this question by simplifying the expression using inverse trigonometric functions. For \[\left| t \right|<1\], we can write \[x={{\sin }^{-1}}\left( \dfrac{2t}{1+{{t}^{2}}} \right)=2{{\tan }^{-1}}t,y={{\tan }^{-1}}\left( \dfrac{2t}{1-{{t}^{2}}} \right)=2{{\tan }^{-1}}t\] and thus, we can write \[x=y\] and differentiate it to find the derivative.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
