The maximum number of equivalence relations on the set $A=\left\{ 1,2,3 \right\}$ is
(a) $1$
(b) $2$
(c) $3$
(d) $5$
Answer
Verified
407.6k+ views
Hint: Will find all the possible relations that are equivalence i.e. we will find all the possible relations that are symmetric, reflexive and transitive at the same time.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main 2025 Maths Online - FREE Mock Test Series
JEE Main 2024 Physics Question Paper with Solutions 27 January Shift 1
JEE Main Results 2025: Updates, Toppers, Scorecard, and Cut-Offs
JEE Main Maths Class 12 Mock Test