
If \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\], where \[x\] and \[y\] are real. Then find the ordered pair \[\left( {x,y} \right)\].
A. \[\left( { - 3,0} \right)\]
B. \[\left( {0,3} \right)\]
C. \[\left( {0, - 3} \right)\]
D. \[\left( {\dfrac{1}{2},\sqrt {\dfrac{3}{2}} } \right)\]
Answer
232.8k+ views
Hint We know that, the cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\]. First, we will take common \[\sqrt 3 \] from the left side of the equation and put \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]. Then simplify the equation and compare the real part and imaginary part to get the value of \[x\] and \[y\].
Formula used:
The cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\].
\[{\omega ^3} = 1\]
\[{i^2} = - 1\]
Complete step by step solution
Given equation is \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Take common \[i\sqrt 3 \]
\[{\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{\sqrt 3 }}{{2i}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Multiply \[i\] with numerator and denominator of \[\dfrac{{\sqrt 3 }}{{2i}}\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{i\sqrt 3 }}{{2{i^2}}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^2} = - 1\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( { - \dfrac{{i\sqrt 3 }}{2} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{1 - i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now putting \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{48}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\] [Since \[{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}} = {3^{\dfrac{1}{2} \cdot 50}} = {3^{25}}\]]
\[ \Rightarrow {\left( {{i^4}} \right)^{12}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^4} = 1\] and \[{i^2} = - 1\]
\[ \Rightarrow - {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now divide both sides by \[{3^{25}}\]
\[ \Rightarrow - {\omega ^{50}} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^{48}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\left( {{\omega ^3}} \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^3} = 1\] in the above equation
\[ \Rightarrow - {\left( 1 \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\] in the above equation
\[ \Rightarrow - \dfrac{{ - 1 - i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
\[ \Rightarrow \dfrac{1}{2} + \dfrac{{i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
Now comparing the real part and imaginary part
\[x = \dfrac{1}{2}\] and \[y = \dfrac{{\sqrt 3 }}{2}\]
So, the ordered pair is \[\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right)\].
Hence option D is the correct option.
Note: Students often do a common mistake to solve the equation \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]. They used binomial expansion to solve the incorrect way. We should use cube roots of 1 to solve the equation.
Formula used:
The cube root of 1 are 1, \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\] and \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\].
\[{\omega ^3} = 1\]
\[{i^2} = - 1\]
Complete step by step solution
Given equation is \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Take common \[i\sqrt 3 \]
\[{\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{\sqrt 3 }}{{2i}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Multiply \[i\] with numerator and denominator of \[\dfrac{{\sqrt 3 }}{{2i}}\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( {\dfrac{{i\sqrt 3 }}{{2{i^2}}} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^2} = - 1\]
\[ \Rightarrow {\left( {i\sqrt 3 } \right)^{50}}{\left( { - \dfrac{{i\sqrt 3 }}{2} + \dfrac{1}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{1 - i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\left( {\dfrac{{ - 1 + i\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now putting \[\omega = \dfrac{{ - 1 + i\sqrt 3 }}{2}\]
\[ \Rightarrow {i^{50}}{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}}{\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
\[ \Rightarrow {i^{48}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\] [Since \[{\left( {{3^{\dfrac{1}{2}}}} \right)^{50}} = {3^{\dfrac{1}{2} \cdot 50}} = {3^{25}}\]]
\[ \Rightarrow {\left( {{i^4}} \right)^{12}} \cdot {i^2} \cdot {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Putting \[{i^4} = 1\] and \[{i^2} = - 1\]
\[ \Rightarrow - {3^{25}} \cdot {\omega ^{50}} = {3^{25}}\left( {x + iy} \right)\]
Now divide both sides by \[{3^{25}}\]
\[ \Rightarrow - {\omega ^{50}} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^{48}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\left( {{\omega ^3}} \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^3} = 1\] in the above equation
\[ \Rightarrow - {\left( 1 \right)^{16}} \cdot {\omega ^2} = \left( {x + iy} \right)\]
\[ \Rightarrow - {\omega ^2} = \left( {x + iy} \right)\]
Putting \[{\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}\] in the above equation
\[ \Rightarrow - \dfrac{{ - 1 - i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
\[ \Rightarrow \dfrac{1}{2} + \dfrac{{i\sqrt 3 }}{2} = \left( {x + iy} \right)\]
Now comparing the real part and imaginary part
\[x = \dfrac{1}{2}\] and \[y = \dfrac{{\sqrt 3 }}{2}\]
So, the ordered pair is \[\left( {\dfrac{1}{2},\dfrac{{\sqrt 3 }}{2}} \right)\].
Hence option D is the correct option.
Note: Students often do a common mistake to solve the equation \[{\left( {\dfrac{3}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)^{50}} = {3^{25}}\left( {x + iy} \right)\]. They used binomial expansion to solve the incorrect way. We should use cube roots of 1 to solve the equation.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

