
If \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5},\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\] and \[\alpha ,\beta \] lie between \[0\] and \[\dfrac{\pi }{4}\] then find the value of \[\tan 2\alpha \].
A. \[\dfrac{{16}}{{63}}\]
B. \[\dfrac{{56}}{{33}}\]
C. \[\dfrac{{28}}{{33}}\]
D. None of these
Answer
232.8k+ views
Hint: In this question, for determining the value of \[\tan 2\alpha \], we need to express \[\tan 2\alpha \] in terms of \[\tan \left( {\alpha + \beta + \alpha - \beta } \right)\]. For this, we have to find the values of \[\cos \left( {\alpha - \beta } \right)\]and \[\sin \left( {\alpha - \beta } \right)\] from the given data.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Complete step by step answer:
We know that \[\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}\].
But \[\sin x = \sqrt {1 - {{\cos }^2}x} \].
Thus, we get
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\cos }^2}\left( {\alpha + \beta } \right)} \]
\[\sin \left( {\alpha + \beta } \right) = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[\sin \left( {\alpha + \beta } \right) = \dfrac{3}{5}\]
Also, we know that \[\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}\]
But \[\cos x = \sqrt {1 - {{\sin }^2}x} \]
So, we get
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\sin }^2}\left( {\alpha - \beta } \right)} \]
\[\cos \left( {\alpha - \beta } \right) = \sqrt {1 - {{\left( {5/13} \right)}^2}} \]
\[\cos \left( {\alpha - \beta } \right) = \dfrac{{12}}{{13}}\]
Therefore, we can say that \[\tan 2\alpha = \tan \left( {\alpha + \beta + \alpha - \beta } \right)\]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a \times \tan b}}\]
So, \[\tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right) \times \tan \left( {\alpha - \beta } \right)}}\]
Now, let us express in terms of sin and cos
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} + \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}{{1 - \dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \times \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}}}}\]
Thus, we can have
\[\tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{3/5}}{{4/5}} + \dfrac{{5/13}}{{12/13}}}}{{1 - \dfrac{{3/5}}{{4/5}} \times \dfrac{{5/13}}{{12/13}}}}\]
By simplifying, we get
\[\tan \left( {2\alpha } \right) = \dfrac{{56}}{{33}}\]
Hence, the value of \[\tan \left( {2\alpha } \right)\] is \[\dfrac{{56}}{{33}}\].
Therefore, the option (B) is correct.
Note: Many students make mistakes in solving the calculation part and applying trigonometric identities. This is the only way, through which we can solve the example in the simplest way. Converting all the trigonometric ratios into sine and cosine is necessary for solving trigonometric problems as this makes them simpler.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

