
If A=$\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \\ \end{matrix} \right] $then$ A^{-1}$ [DCE 1999]
a)$A$
b) $A^2$
c) $A^3$
d) $A^4$
Answer
232.8k+ views
Hint: We have to find $A^{-1}$ of this $3\times3$ matrix, but in the options we have $A^2$, $A^3$, and $A^4$. So for that firstly we will determine the determinant of the matrix $|A|$ then, make $adjA$ and put the values in the inverse matrix formula. After getting the inverse, evaluate the options given and compare results.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Formula used: Inverse Matrix formula: $A^{-1}=\dfrac{AdjA}{|A|}$
Complete step by step solution: Let $A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]$
Finding determinant of $A$;
$|A|=3[(-3)(1)-4(-1)]+3[2(1)-4(0)]+4[2(-1)-0(4)]\\
|A|=3(-3+4)+3(2)+4(-2)\\
|A|=3+6-8\\
|A|=1$
Since its determinant is not zero, it's an invertible matrix.
Now, find the adjoint of matrix $A$ by taking the transpose of the cofactor matrix.
Cofactors for each element of matrix A are given by;
$C_{11}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{11}=-3+4\\
\Rightarrow C_{11}=1
C_{12}=-\begin{vmatrix}2 & 4 \\ 0 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{12}=-2-0\\
\Rightarrow C_{12}=-2
C_{13}=\begin{vmatrix}2 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{13}=-2-0\\
\Rightarrow C_{13}=-2$
$C_{21}=\begin{vmatrix}-3 & 4 \\ -1 & 1 \\ \end{vmatrix}\\
\Rightarrow C_{21}=3
C_{22}=-\begin{vmatrix}3 & -3 \\ 0 & -1 \\ \end{vmatrix}\\
\Rightarrow C_{22}=-(-3)\\
\Rightarrow C_{22}=3
C_{23}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{23}=0$
$C_{31}=\begin{vmatrix}-3 & 4 \\ -3 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{31}=0
C_{32}=-\begin{vmatrix}3 & 4 \\ 2 & 4 \\ \end{vmatrix}\\
\Rightarrow C_{32}=-4
C_{33}=\begin{vmatrix} 3 & -3 \\ 2 & -3 \\ \end{vmatrix}\\
\Rightarrow C_{33}=-3$
Therefore, the adjoint matrix is
$Adj A=\left[ \begin{matrix} 1 & -2 & -2 \\ -1 & 3 & 3 \\0 & -4 & -3 \\ \end{matrix} \right]^{-1}\\
Adj A=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Substitute the adjoint matrix and determine in the inverse matrix formula we get;
$A^{-1}=\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Let’s evaluate $A^2$ i.e.$ A^2=A.A$
$A^2=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 9-6 & -9+9-4 & 12-12+4 \\ 6-6 & -6+9-4 & 8-12+4 \\-2 & 3-1 & -4+1 \\ \end{matrix} \right]\\
=\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right]$
Since it is not equal to $A^{-1}$.
$A^3=A^2.A$
$A^3$
=$\left[ \begin{matrix} 3 & -4 & 4 \\ 0 & -1 & 0 \\-2 & 2 & -3 \\ \end{matrix} \right].\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\0 & -1 & 1 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 9-8 & -9+12-4 & 12-16+4 \\ -2 & 3 & -4 \\-6+4 & 6-6+3 & -8+8-3 \\ \end{matrix} \right]\\$
=$\left[ \begin{matrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\-2 & 3 & -3 \\ \end{matrix} \right]$
Hence,$ A^{-1}=A^3$
Thus, Option (C) is correct.
Note: Remember ${{A}^{-1}}$ exists only when $|A|\ne 0$. We have to remember the formula for ${{A}^{-1}}$. Sometimes students make mistakes while solving $adjA$ and $|A|$ for a $3\times3$ matrix. If the inverse of a matrix exists, we can find the adjoint of the given matrix and divide it by the determinant of the matrix.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

