
If a, b, c are the sides of a triangle, then the minimum value of \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]is equal to
A. 3
B. 6
C. 9
D. 12
Answer
232.8k+ views
Hint: In order to find the minimum value of\[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\], all you need to do is apply distributive property and solve for each variable separately.
For example, let's say we have 3 variables (A, B, C) and we want to find out what their combined minimum value would be.
Complete step by step solution:\[a,{\rm{ }}b,{\rm{ }}c > 0\]
Take \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]
\[2A = \dfrac{{2a}}{{b + c - a}} + \dfrac{{2b}}{{c + a - b}} + \dfrac{{2c}}{{a + b - c}}\]
To each term, add 1 and subtract 3.
\[2A = \left[ {\dfrac{{2a}}{{b + c - a}} + 1} \right] + \left[ {\dfrac{{2b}}{{c + a - b}} + 1} \right] + \left[ {\dfrac{{2c}}{{a + b - c}} + 1} \right] - 3\]
\[2A = \left[ {\dfrac{{a + b + c}}{{b + c - a}}} \right] + \left[ {\dfrac{{a + b + c}}{{c + a - b}}} \right] + \left[ {\dfrac{{a + b + c}}{{a + b - c}}} \right] - 3\]
\[ = \left( {a + b + c} \right) + \left[ {\dfrac{1}{{b + c - a}} + \dfrac{1}{{c + a - b}} + \dfrac{1}{{a + b - c}}} \right] - 3\]
For the numbers, we use A.M. > H.M
\[\dfrac{1}{{b + c - a}},\dfrac{1}{{a + c - b}},\dfrac{1}{{a + b - c}}\]
\[\dfrac{{\dfrac{1}{{b + c - a}} + \dfrac{1}{{a + c - b}} + \dfrac{1}{{a + b - c}}}}{3} > \dfrac{3}{{(b + c - a) + (a + c - b) + (a + b - c)}}\]
\[ > \dfrac{3}{{a + b + c}}\]
\[(a + b + c)\left( {\dfrac{1}{{b + c - a}} + \dfrac{1}{{a + c - b}} + \dfrac{1}{{a + b - c}}} \right) > g\]
\[2A + 3 > g\]
\[2A{\rm{ }} + {\rm{ }}3{\rm{ }} > {\rm{ }}9\]
\[2A{\rm{ }} > {\rm{ }}6\]
\[A{\rm{ }} > {\rm{ }}3\]
Therefore, \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]must equal at least that value. equivalent to \[3\].
Option ‘A’ is correct
Note: Students often make mistakes when using A.M> H.M. This is because the order of operations (or the algebraic rules) do not always work in reverse.
The maximum value of \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]is equal to 3. So, the students make mistake by thinking that it will be a maximum when in fact it would always be the same as (3).
For example, let's say we have 3 variables (A, B, C) and we want to find out what their combined minimum value would be.
Complete step by step solution:\[a,{\rm{ }}b,{\rm{ }}c > 0\]
Take \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]
\[2A = \dfrac{{2a}}{{b + c - a}} + \dfrac{{2b}}{{c + a - b}} + \dfrac{{2c}}{{a + b - c}}\]
To each term, add 1 and subtract 3.
\[2A = \left[ {\dfrac{{2a}}{{b + c - a}} + 1} \right] + \left[ {\dfrac{{2b}}{{c + a - b}} + 1} \right] + \left[ {\dfrac{{2c}}{{a + b - c}} + 1} \right] - 3\]
\[2A = \left[ {\dfrac{{a + b + c}}{{b + c - a}}} \right] + \left[ {\dfrac{{a + b + c}}{{c + a - b}}} \right] + \left[ {\dfrac{{a + b + c}}{{a + b - c}}} \right] - 3\]
\[ = \left( {a + b + c} \right) + \left[ {\dfrac{1}{{b + c - a}} + \dfrac{1}{{c + a - b}} + \dfrac{1}{{a + b - c}}} \right] - 3\]
For the numbers, we use A.M. > H.M
\[\dfrac{1}{{b + c - a}},\dfrac{1}{{a + c - b}},\dfrac{1}{{a + b - c}}\]
\[\dfrac{{\dfrac{1}{{b + c - a}} + \dfrac{1}{{a + c - b}} + \dfrac{1}{{a + b - c}}}}{3} > \dfrac{3}{{(b + c - a) + (a + c - b) + (a + b - c)}}\]
\[ > \dfrac{3}{{a + b + c}}\]
\[(a + b + c)\left( {\dfrac{1}{{b + c - a}} + \dfrac{1}{{a + c - b}} + \dfrac{1}{{a + b - c}}} \right) > g\]
\[2A + 3 > g\]
\[2A{\rm{ }} + {\rm{ }}3{\rm{ }} > {\rm{ }}9\]
\[2A{\rm{ }} > {\rm{ }}6\]
\[A{\rm{ }} > {\rm{ }}3\]
Therefore, \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]must equal at least that value. equivalent to \[3\].
Option ‘A’ is correct
Note: Students often make mistakes when using A.M> H.M. This is because the order of operations (or the algebraic rules) do not always work in reverse.
The maximum value of \[\dfrac{a}{{b + c - a}} + \dfrac{b}{{c + a - b}} + \dfrac{c}{{a + b - c}}\]is equal to 3. So, the students make mistake by thinking that it will be a maximum when in fact it would always be the same as (3).
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

