
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
A. \[80\]
B. \[20\]
C. \[-20\]
D. \[37\]
Answer
232.8k+ views
Hint: In this question, we are to find the given integral. Here the function in the given integral is provided with two different intervals. According to the interval, the function is to be selected. This is achieved by subdividing the integrals into two parts with two different intervals in such a way that we get the given function. I.e., The interval [1,4] is subdivided into [1,2] and (2,4]. Thus, by applying these intervals for the given integral, we get the required value.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on [a, b]. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function$f(x)$ over [a, b].
I.e., $\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$(lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0 if f(x)$ is an odd function
5)$\begin{align} \int_{0}^{2a}{f(x)dx}=2 \int_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\ \text{ }=0\text{ if }f(2a-x)=-f(x) \end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{1}^{4}{f(x)dx}\]
And the given function is
\[f(x)= 4x+3, if~ 1 \leq x \leq 2 \\ ~~~~~~~~= 3x+5, if~2< x \leq 4\],
then \[\int\limits_{1}^{4}{f(x)dx=}\]
So, the given integral is
\[\begin{align} & I=\int\limits_{1}^{4}{f(x)dx}=\int\limits_{1}^{2}{f(x)dx+\int\limits_{2}^{4}{f(x)dx}} \ \\ \Rightarrow I=\int\limits_{1}^{2}{(4x+3)dx+\int\limits_{2}^{4}{(3x+5)dx}} \end{align}\]
We know that \[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}\]
Then,
\[\begin{align} \int\limits_{1}^{4}{f(x)dx=}\left[ \dfrac{4{{x}^{2}}}{2}+3x \right]_{1}^{2}+\left[ \dfrac{3{{x}^{2}}}{2}+5x \right]_{2}^{4} \\ =\left[ 2{{(2)}^{2}}+3(2) \right]-\left[ 2{{(1)}^{2}}+3(1) \right]+\left[ \dfrac{3{{(4)}^{2}}}{2}+5(4) \right]-\left[ \dfrac{3{{(2)}^{2}}}{2}+5(2) \right] \\ =14-5+44-16 \\ =37 \end{align}\]
Option ‘D’ is correct
Note: Here we need to remember that, the given function is continuous at the given intervals. Thus, we can directly substitute the respective function at the respective interval. We need to remember this, as per the intervals the function has to be chosen. After that, the function should be integrated within those limits. On evaluating those, we get the value of the integral.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

