
Find the value of $\csc\left[ {2{{\cot }^{ - 1}}\left( 5 \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$.
A. $\dfrac{{75}}{{56}}$
B. $\dfrac{{65}}{{56}}$
C. $\dfrac{{56}}{{33}}$
D. $\dfrac{{65}}{{33}}$
Answer
232.8k+ views
Hint: To solve the question, we will assume that $2{\cot ^{ - 1}}\left( 5 \right) = \theta $ and ${\cos ^{ - 1}}\left( {\frac{4}{5}} \right) = \phi $. Then calculate the value of $\cos \theta ,\sin \theta ,\cos \phi $ and $\sin \phi $ from the above equations. Using these values, calculate the value of the given expression.
Formula Used:
${\cot ^{ - 1}}\left( a \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{a}} \right)$
$2{\tan ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\theta }}{{1 - {\theta ^2}}}} \right)$
${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$\sec \theta = \dfrac{1}{{\cos \theta }}$
${\sin ^2}\theta = 1 - {\cos ^2}\theta $
$\csc\alpha = \dfrac{1}{{\sin \alpha }}$
$\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta $
Complete step by step solution:
Given trigonometric expression is
$\csc\left[ {2{{\cot }^{ - 1}}\left( 5 \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Converting ${\cot ^{ - 1}}$ into ${\tan ^{ - 1}}$ by using the formula ${\cot ^{ - 1}}\left( a \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{a}} \right)$.
$ = \csc\left[ {2{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Now applying $2{\tan ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\theta }}{{1 - {\theta ^2}}}} \right)$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{2 \cdot \dfrac{1}{5}}}{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{2}{5}}}{{1 - \dfrac{1}{{25}}}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{10}}{{24}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Now let ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $ ……(1) and ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $ …….(2)
Now we will calculate $\sin \theta ,\cos \theta $ from ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $
${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $
$ \Rightarrow \left( {\dfrac{5}{{12}}} \right) = \tan \theta $
Apply formula if $\tan \theta = \dfrac{a}{b}$, then $\sin \theta = \dfrac{a}{{\sqrt {{a^2} + {b^2}} }}$
$\sin \theta = \dfrac{5}{{\sqrt {{5^2} + {{12}^2}} }}$
$ \Rightarrow \sin \theta = \dfrac{5}{{\sqrt {25 + 144} }}$
$ \Rightarrow \sin \theta = \dfrac{5}{{13}}$
Apply formula if $\tan \theta = \dfrac{a}{b}$, then $\cos \theta = \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}$
$\cos \theta = \dfrac{{12}}{{\sqrt {{5^2} + {{12}^2}} }}$
$ \Rightarrow \cos \theta = \dfrac{{12}}{{\sqrt {25 + 144} }}$
$ \Rightarrow \cos \theta = \dfrac{{12}}{{13}}$
Now we will calculate $\sin \phi ,\cos \phi $ from ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $
${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $
$ \Rightarrow \left( {\dfrac{4}{5}} \right) = \cos \phi $
Putting $\cos \phi = \left( {\dfrac{4}{5}} \right)$ in ${\sin ^2}\phi = 1 - {\cos ^2}\phi $
${\sin ^2}\phi = 1 - {\left( {\dfrac{4}{5}} \right)^2}$
$ \Rightarrow {\sin ^2}\phi = 1 - \dfrac{{16}}{{25}}$
$ \Rightarrow {\sin ^2}\phi = \dfrac{9}{{25}}$
$ \Rightarrow \sin \phi = \dfrac{3}{5}$
Now we will put ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $ ……(1) and ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $ in $\csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$\csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {\theta + \phi } \right]$
Convert $\csc$ into $\sin $
$ = \dfrac{1}{{\sin \left[ {\theta + \phi } \right]}}$
Now applying $\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta $
$ = \dfrac{1}{{\sin \theta \cos \phi + \cos \phi \sin \theta }}$
Now putting the values $\sin \theta ,\cos \theta ,\sin \phi ,$ and $\cos \phi $
$ = \dfrac{1}{{\sin \theta \cos \phi + \cos \theta \sin \phi }}$
$ = \dfrac{1}{{\dfrac{5}{{13}} \cdot \dfrac{4}{5} + \dfrac{{12}}{{13}} \cdot \dfrac{3}{5}}}$
$ = \dfrac{1}{{\dfrac{{20}}{{65}} + \dfrac{{36}}{{65}}}}$
$ = \dfrac{1}{{\dfrac{{20 + 36}}{{65}}}}$
$ = \dfrac{{65}}{{56}}$
Option ‘B’ is correct
Note: To solve this type of problem a student must have deep knowledge about the inverse function and trigonometry ratios. In the given question we need to assume the value of ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$ and $2{\cot ^{ - 1}}\left( 5 \right)$ to get the value of $\cos ec\left[ {2{{\cot }^{ - 1}}\left( 5 \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$.
Formula Used:
${\cot ^{ - 1}}\left( a \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{a}} \right)$
$2{\tan ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\theta }}{{1 - {\theta ^2}}}} \right)$
${\sec ^2}\theta = 1 + {\tan ^2}\theta $
$\sec \theta = \dfrac{1}{{\cos \theta }}$
${\sin ^2}\theta = 1 - {\cos ^2}\theta $
$\csc\alpha = \dfrac{1}{{\sin \alpha }}$
$\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta $
Complete step by step solution:
Given trigonometric expression is
$\csc\left[ {2{{\cot }^{ - 1}}\left( 5 \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Converting ${\cot ^{ - 1}}$ into ${\tan ^{ - 1}}$ by using the formula ${\cot ^{ - 1}}\left( a \right) = {\tan ^{ - 1}}\left( {\dfrac{1}{a}} \right)$.
$ = \csc\left[ {2{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Now applying $2{\tan ^{ - 1}}\theta = {\tan ^{ - 1}}\left( {\dfrac{{2\theta }}{{1 - {\theta ^2}}}} \right)$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{2 \cdot \dfrac{1}{5}}}{{1 - {{\left( {\dfrac{1}{5}} \right)}^2}}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\dfrac{2}{5}}}{{1 - \dfrac{1}{{25}}}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{{10}}{{24}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
Now let ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $ ……(1) and ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $ …….(2)
Now we will calculate $\sin \theta ,\cos \theta $ from ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $
${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $
$ \Rightarrow \left( {\dfrac{5}{{12}}} \right) = \tan \theta $
Apply formula if $\tan \theta = \dfrac{a}{b}$, then $\sin \theta = \dfrac{a}{{\sqrt {{a^2} + {b^2}} }}$
$\sin \theta = \dfrac{5}{{\sqrt {{5^2} + {{12}^2}} }}$
$ \Rightarrow \sin \theta = \dfrac{5}{{\sqrt {25 + 144} }}$
$ \Rightarrow \sin \theta = \dfrac{5}{{13}}$
Apply formula if $\tan \theta = \dfrac{a}{b}$, then $\cos \theta = \dfrac{b}{{\sqrt {{a^2} + {b^2}} }}$
$\cos \theta = \dfrac{{12}}{{\sqrt {{5^2} + {{12}^2}} }}$
$ \Rightarrow \cos \theta = \dfrac{{12}}{{\sqrt {25 + 144} }}$
$ \Rightarrow \cos \theta = \dfrac{{12}}{{13}}$
Now we will calculate $\sin \phi ,\cos \phi $ from ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $
${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $
$ \Rightarrow \left( {\dfrac{4}{5}} \right) = \cos \phi $
Putting $\cos \phi = \left( {\dfrac{4}{5}} \right)$ in ${\sin ^2}\phi = 1 - {\cos ^2}\phi $
${\sin ^2}\phi = 1 - {\left( {\dfrac{4}{5}} \right)^2}$
$ \Rightarrow {\sin ^2}\phi = 1 - \dfrac{{16}}{{25}}$
$ \Rightarrow {\sin ^2}\phi = \dfrac{9}{{25}}$
$ \Rightarrow \sin \phi = \dfrac{3}{5}$
Now we will put ${\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = \theta $ ……(1) and ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right) = \phi $ in $\csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$\csc\left[ {{{\tan }^{ - 1}}\left( {\dfrac{5}{{12}}} \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$
$ = \csc\left[ {\theta + \phi } \right]$
Convert $\csc$ into $\sin $
$ = \dfrac{1}{{\sin \left[ {\theta + \phi } \right]}}$
Now applying $\sin \left( {\alpha + \beta } \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta $
$ = \dfrac{1}{{\sin \theta \cos \phi + \cos \phi \sin \theta }}$
Now putting the values $\sin \theta ,\cos \theta ,\sin \phi ,$ and $\cos \phi $
$ = \dfrac{1}{{\sin \theta \cos \phi + \cos \theta \sin \phi }}$
$ = \dfrac{1}{{\dfrac{5}{{13}} \cdot \dfrac{4}{5} + \dfrac{{12}}{{13}} \cdot \dfrac{3}{5}}}$
$ = \dfrac{1}{{\dfrac{{20}}{{65}} + \dfrac{{36}}{{65}}}}$
$ = \dfrac{1}{{\dfrac{{20 + 36}}{{65}}}}$
$ = \dfrac{{65}}{{56}}$
Option ‘B’ is correct
Note: To solve this type of problem a student must have deep knowledge about the inverse function and trigonometry ratios. In the given question we need to assume the value of ${\cos ^{ - 1}}\left( {\dfrac{4}{5}} \right)$ and $2{\cot ^{ - 1}}\left( 5 \right)$ to get the value of $\cos ec\left[ {2{{\cot }^{ - 1}}\left( 5 \right) + {{\cos }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right]$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

