Calculate the entropy change, involved in the conversion of one mole of liquid water at 373 K to vapour at the same temperature (Latent heat of vaporization =2.257 kJ/g).
A. \[{\rm{105}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
B. \[{\rm{107}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
C. \[{\rm{108}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
D. \[{\rm{109}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
Last updated date: 22nd Mar 2023
•
Total views: 69k
•
Views today: 0.54k
Answer
69k+ views
Hint: Vaporisation is determined as the transformation of states of matter from the liquid state to the vapour state.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
Recently Updated Pages
In India on the occasion of marriages the fireworks class 12 chemistry JEE_Main

The alkaline earth metals Ba Sr Ca and Mg may be arranged class 12 chemistry JEE_Main

Which of the following has the highest electrode potential class 12 chemistry JEE_Main

Which of the following is a true peroxide A rmSrmOrm2 class 12 chemistry JEE_Main

Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

Phosphine is obtained from the following ore A Calcium class 12 chemistry JEE_Main

Trending doubts
Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Cl P Cl bond angles in PCl5 molecule is A 120 circ class 11 chemistry CBSE

Two vectors of equal magnitude have a resultant equal class 11 physics CBSE

A magnetic moment of 173BM will be shown by which one class 11 chemistry CBSE

Which of the following cannot be prepared by Sandmeyers class 11 chemistry CBSE

The maximum number of possible oxidation states of class 12 chemistry CBSE

What would happen to the life of a cell if there was class 11 biology CBSE

Name the members of the lanthanoid series which exhibit class 12 chemistry CBSE
