Calculate the entropy change, involved in the conversion of one mole of liquid water at 373 K to vapour at the same temperature (Latent heat of vaporization =2.257 kJ/g).
A. \[{\rm{105}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
B. \[{\rm{107}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
C. \[{\rm{108}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
D. \[{\rm{109}}{\rm{.9J}}{{\rm{K}}^{{\rm{ - 1}}}}{\rm{mo}}{{\rm{l}}^{{\rm{ - 1}}}}\;\]
Answer
126.3k+ views
Hint: Vaporisation is determined as the transformation of states of matter from the liquid state to the vapour state.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
The latent heat vaporization (∆Hvap) or the enthalpy of vaporization is the enthalpy required to transform a liquid into a gas.
Formula Used:
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}}}{{{{\rm{T}}_{\rm{b}}}}}\]
where
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}\]=entropy change accompanying vapourization process
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation
\[{{\rm{T}}_{\rm{b}}}\]=boiling point
Complete Step by Step Solution:
In the given reaction, one mole of liquid water at 373 K is converted into vapour.
This reaction involves the transformation of liquid water into a vapour state.
This process is called vapourisation.
This reaction occurs as follows: -
\[{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right) \to {{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{g}} \right)\]
To find the entropy change for this reaction, the enthalpy of vaporization needs to be calculated first.
It is given that heat of vaporization or
\[{{\rm{q}}_{{\rm{vap}}}}\]=2.257 kJ/g = 2257 J/g
Mass of 1 mole of water=18g/mol
So, the enthalpy of vaporisation or
\[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]
=\[{{\rm{q}}_{{\rm{vap}}}}\]×(mass of 1 mole of water)
=2257 J/g(18 g/mol)
=40626 J/mol
So, \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\] is 40626 J/mol
We are given the boiling point,
\[{{\rm{T}}_{\rm{b}}}\]=373K.
So, we have \[{\rm{\Delta }}{{\rm{H}}_{{\rm{vap}}}}\]=enthalpy of vaporisation=40626 J/mol
\[{{\rm{T}}_{\rm{b}}}\]=boiling point=373K
\[{\rm{\Delta }}{{\rm{S}}_{{\rm{vap}}}}{\rm{ = }}\frac{{{\rm{40626Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}}}{{{\rm{373K}}}}\]
\[{\rm{ = 108}}{\rm{.91Jmo}}{{\rm{l}}^{{\rm{ - 1}}}}{{\rm{K}}^{{\rm{ - 1}}}}\]
So, option C is correct.
Note: While attending to the question, units of temperature, the heat of vaporisation, enthalpy of vaporisation, and entropy must be surely mentioned. Unit of entropy the conclusive statement must be mentioned. The heat of vaporisation is given in kJ/mol while the given options are in J/Kmol. So, the conversion of kJ/mol into J/mol is important.
Last updated date: 02nd Oct 2023
•
Total views: 126.3k
•
Views today: 3.26k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Can anyone list 10 advantages and disadvantages of friction

State the laws of reflection of light

Difference between physical and chemical change class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Write a short note on the Chipko movement class 11 biology CBSE

10 examples of law on inertia in our daily life
