
A thin non conducting horizontal disc of mass m having total charge q distributed uniformly over its surface can rotate freely about its axis. initially, when the disk is stationary a magnetic field b directed perpendicular to the plane is switched on at t=0. Find the angular velocity ω acquired by disc as a function of time, if B=kt, where t is the time.
Answer
232.8k+ views
Hint: Angular velocity is defined as the rate of change of angular displacement of an object and the axis about which the object is rotating. It is a vector quantity. The rotational equivalent of linear force is called Torque. In simple terms, Torque is the tendency of a force to turn or twist. Non-conductor is a substance that does not conduct heat or electricity.
Complete solution:
Mass of disc = m
Magnetic field = B
Time = t
B = kt
Angular velocity, \[\omega \]=?
We know that the Electric field-induced due to time-dependent magnetic field is given by
$\smallint E.dr = - \pi {r^2}\dfrac{{dB}}{{dt}}$
\[ \Rightarrow {\rm E} \times 2\pi r = - \pi {r^2}\dfrac{d}{{dt}}\left( {kt} \right)\]
\[ \Rightarrow {\rm E} \times 2\pi r = - \pi {r^2}k\]
\[ \Rightarrow {\rm E} = \dfrac{{rk}}{2}\]
Now the torque is given by the equation
$\tau = \smallint \dfrac{q}{{\pi {r^2}}} \times 2\pi rdr \times \dfrac{{rk}}{2} \times r$
\[ \Rightarrow \tau = \smallint \dfrac{{qk}}{{{r^2}}}{r^3}dr\]
\[ \Rightarrow \tau = \dfrac{{qk}}{{{r^2}}}\dfrac{{{r^4}}}{4}\]
\[ \Rightarrow \dfrac{{m{r^2}}}{2}\alpha = \dfrac{{qk{r^2}}}{4}\]
\[ \Rightarrow \alpha = \dfrac{{qk}}{{2m}}\]
We know that angular velocity is given by, $\omega = \alpha \times t$
$ \Rightarrow \omega = \dfrac{{qk}}{{2m}}t$
Hence the angular velocity as a function of time is $\omega = \dfrac{{qk}}{{2m}}t.$
Note: 1) Torque can be considered as a special case of Moment.
2) The angular velocity direction of the vector perpendicular to the plane of rotation is given by the right-hand rule.
3) Magnetic field defines the magnetic influence on moving magnetized materials and electric currents. When a charge is moving in a magnetic field, it experiences a force that is perpendicular to its velocity and also to the magnetic field.
4) The magnetic field and the electric field are interrelated to each other and both of them are the components of the electromagnetic force.
5) Electric charge is the property of matter which causes it to experience a force when placed in an electromagnetic field. Protons and Electrons are the two types of charges.
Complete solution:
Mass of disc = m
Magnetic field = B
Time = t
B = kt
Angular velocity, \[\omega \]=?
We know that the Electric field-induced due to time-dependent magnetic field is given by
$\smallint E.dr = - \pi {r^2}\dfrac{{dB}}{{dt}}$
\[ \Rightarrow {\rm E} \times 2\pi r = - \pi {r^2}\dfrac{d}{{dt}}\left( {kt} \right)\]
\[ \Rightarrow {\rm E} \times 2\pi r = - \pi {r^2}k\]
\[ \Rightarrow {\rm E} = \dfrac{{rk}}{2}\]
Now the torque is given by the equation
$\tau = \smallint \dfrac{q}{{\pi {r^2}}} \times 2\pi rdr \times \dfrac{{rk}}{2} \times r$
\[ \Rightarrow \tau = \smallint \dfrac{{qk}}{{{r^2}}}{r^3}dr\]
\[ \Rightarrow \tau = \dfrac{{qk}}{{{r^2}}}\dfrac{{{r^4}}}{4}\]
\[ \Rightarrow \dfrac{{m{r^2}}}{2}\alpha = \dfrac{{qk{r^2}}}{4}\]
\[ \Rightarrow \alpha = \dfrac{{qk}}{{2m}}\]
We know that angular velocity is given by, $\omega = \alpha \times t$
$ \Rightarrow \omega = \dfrac{{qk}}{{2m}}t$
Hence the angular velocity as a function of time is $\omega = \dfrac{{qk}}{{2m}}t.$
Note: 1) Torque can be considered as a special case of Moment.
2) The angular velocity direction of the vector perpendicular to the plane of rotation is given by the right-hand rule.
3) Magnetic field defines the magnetic influence on moving magnetized materials and electric currents. When a charge is moving in a magnetic field, it experiences a force that is perpendicular to its velocity and also to the magnetic field.
4) The magnetic field and the electric field are interrelated to each other and both of them are the components of the electromagnetic force.
5) Electric charge is the property of matter which causes it to experience a force when placed in an electromagnetic field. Protons and Electrons are the two types of charges.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

