
A soft drink was bottled with a partial pressure of CO2 of 3 bar over the liquid at room temperature. The partial pressure of CO2 over the solution approaches a value of \[30\] bar when 44 g of CO2 is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is ______ \[ \times {10^{ - 1}}\].
(First dissociation constant of \[{H_2}C{O_3} = 4.0 \times {10^{ - 7}}\] ; \[\log 2 = 0.3\] ; density of the soft drink\[ = 1\,g\,m{L^{ - 1}}\])
Answer
232.8k+ views
Hint: Here, in this question, we have to use henry’s law to calculate the pH. When the temperature is held constant, Henry's law, a gas law, asserts that the amount of gas dissolved in a liquid is precisely proportional to the partial pressure of that gas above the liquid. pH is the negative logarithm (base 10) of hydrogen ion (or hydronium ion).
Complete Step by Step Solution:
The pressure a particular gas exerts within a mixture of other gases is referred to as its partial pressure. For illustration, if a container contains a mixture of three gases—oxygen, nitrogen, and carbon dioxide—its partial pressure is equal to the pressure oxygen exerts on the container's walls, and its individual partial pressures are equal to those of nitrogen and carbon dioxide. The sum of the partial pressures of the gases (oxygen, nitrogen, and carbon dioxide) in the mixture exerts the total pressure on the container walls.
Here, in this question,
\[{P_{1\left( {C{O_2}} \right)}} = 3\,bar\]
\[{P_{2\left( {C{O_2}} \right)}} = 30\,bar\]
The molar mass of \[C{O_2}\] is \[44\,g\,mo{l^{ - 1}}\] .
\[44\,g\]of \[C{O_2}\] is dissolved in \[1\] kg of water at room temperature, that means \[1\] mol of \[C{O_2}\] is dissolved.
Partial pressure of \[C{O_2}\] can be calculated by the equation as follows:
\[{P_{C{O_2}}} = {K_H} \times {n_{C{O_2}}}\]
For the initial condition (before dissolution),
\[ {P_{1\left( {C{O_2}} \right)}} = {K_H} \times {n_{1\left( {C{O_2}} \right)}} \\
\Rightarrow 3 = {K_H} \times {n_{1\left( {C{O_2}} \right)}}\,\,\,\,\,\,...(1) \\ \]
For the final condition (after dissolution),
\[ {P_{2\left( {C{O_2}} \right)}} = {K_H} \times {n_{2\left( {C{O_2}} \right)}} \\
\Rightarrow 30 = {K_H} \times 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2) \\ \]
Now, let us divide equation \[(1)\] with equation \[(2)\] as follows:
\[ \dfrac{3}{{30}} = \dfrac{{{K_H} \times {n_{C{O_2}}}}}{{{K_H} \times 1}} \\
\Rightarrow {n_{C{O_2}}} = \dfrac{3}{{30}} \\
\Rightarrow {n_{C{O_2}}} = 0.1\,mol \\ \]
Now, given the value of \[{K_a} = 4.0 \times {10^{ - 7}}\] .
We can calculate pH by using the value of \[{K_a}\] by the equation as follows:
\[pH = \dfrac{1}{2}\left( {p{K_a} - \log \,c} \right)\]
First, calculate \[p{K_a}\] as follows:
\[ p{K_a} = - \log {K_a} \\
\Rightarrow p{K_a} = - \log \left[ {4 \times {{10}^{ - 7}}} \right] \\
\Rightarrow p{K_a} = 6.4 \\ \]
Substituting values,
\[ pH = \dfrac{1}{2}\left( {p{K_a} - \log \,c} \right) \\
\Rightarrow pH = \dfrac{1}{2}\left( {6.4 - \log \dfrac{1}{{10}}} \right) \\
\Rightarrow pH = \dfrac{1}{2}\left( {6.4 - 1} \right) \\ \]
Further solving,
\[ pH = \dfrac{1}{2} \times 7.4 \\
\Rightarrow pH = 3.7 \\
\Rightarrow pH = 37 \times {10^{ - 1}} \\ \]
Therefore, the pH of the soft drink is \[37 \times {10^{ - 1}}\].
Note: We can measure the acid's strength using its \[p{K_a}\] value. If an acid's \[p{K_a}\] value is excessively high, it is very weak, and if it is excessively low, it is a strong acid. This means strength and \[p{K_a}\] values are inversely related.
Complete Step by Step Solution:
The pressure a particular gas exerts within a mixture of other gases is referred to as its partial pressure. For illustration, if a container contains a mixture of three gases—oxygen, nitrogen, and carbon dioxide—its partial pressure is equal to the pressure oxygen exerts on the container's walls, and its individual partial pressures are equal to those of nitrogen and carbon dioxide. The sum of the partial pressures of the gases (oxygen, nitrogen, and carbon dioxide) in the mixture exerts the total pressure on the container walls.
Here, in this question,
\[{P_{1\left( {C{O_2}} \right)}} = 3\,bar\]
\[{P_{2\left( {C{O_2}} \right)}} = 30\,bar\]
The molar mass of \[C{O_2}\] is \[44\,g\,mo{l^{ - 1}}\] .
\[44\,g\]of \[C{O_2}\] is dissolved in \[1\] kg of water at room temperature, that means \[1\] mol of \[C{O_2}\] is dissolved.
Partial pressure of \[C{O_2}\] can be calculated by the equation as follows:
\[{P_{C{O_2}}} = {K_H} \times {n_{C{O_2}}}\]
For the initial condition (before dissolution),
\[ {P_{1\left( {C{O_2}} \right)}} = {K_H} \times {n_{1\left( {C{O_2}} \right)}} \\
\Rightarrow 3 = {K_H} \times {n_{1\left( {C{O_2}} \right)}}\,\,\,\,\,\,...(1) \\ \]
For the final condition (after dissolution),
\[ {P_{2\left( {C{O_2}} \right)}} = {K_H} \times {n_{2\left( {C{O_2}} \right)}} \\
\Rightarrow 30 = {K_H} \times 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2) \\ \]
Now, let us divide equation \[(1)\] with equation \[(2)\] as follows:
\[ \dfrac{3}{{30}} = \dfrac{{{K_H} \times {n_{C{O_2}}}}}{{{K_H} \times 1}} \\
\Rightarrow {n_{C{O_2}}} = \dfrac{3}{{30}} \\
\Rightarrow {n_{C{O_2}}} = 0.1\,mol \\ \]
Now, given the value of \[{K_a} = 4.0 \times {10^{ - 7}}\] .
We can calculate pH by using the value of \[{K_a}\] by the equation as follows:
\[pH = \dfrac{1}{2}\left( {p{K_a} - \log \,c} \right)\]
First, calculate \[p{K_a}\] as follows:
\[ p{K_a} = - \log {K_a} \\
\Rightarrow p{K_a} = - \log \left[ {4 \times {{10}^{ - 7}}} \right] \\
\Rightarrow p{K_a} = 6.4 \\ \]
Substituting values,
\[ pH = \dfrac{1}{2}\left( {p{K_a} - \log \,c} \right) \\
\Rightarrow pH = \dfrac{1}{2}\left( {6.4 - \log \dfrac{1}{{10}}} \right) \\
\Rightarrow pH = \dfrac{1}{2}\left( {6.4 - 1} \right) \\ \]
Further solving,
\[ pH = \dfrac{1}{2} \times 7.4 \\
\Rightarrow pH = 3.7 \\
\Rightarrow pH = 37 \times {10^{ - 1}} \\ \]
Therefore, the pH of the soft drink is \[37 \times {10^{ - 1}}\].
Note: We can measure the acid's strength using its \[p{K_a}\] value. If an acid's \[p{K_a}\] value is excessively high, it is very weak, and if it is excessively low, it is a strong acid. This means strength and \[p{K_a}\] values are inversely related.
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

