
A small bar magnet has a magnetic moment $1.2A{m^2}$. The magnetic field at a distance $0.1m$ on its axis will be:
$\left( {{\mu _0} = 4\pi \times {{10}^{ - 7}}Tm/A} \right)$
(A) $1.2 \times {10^{ - 4}}T$
(B) $2.4 \times {10^{ - 4}}T$
(C) $2.4 \times {10^4}T$
(D) $1.2 \times {10^4}T$
Answer
233.1k+ views
Hint:
First start with finding the relation between the magnetic moment and the magnetic field then put all the values from the question in that relation in order to get the required answer. Use the value of distance d and the ${\mu _0}$ in the relation and finally you will get the required answer.
Formula used :
magnetic field be B, is given by;
\[B = \dfrac{{{\mu _0}2M}}{{4\pi {d^3}}}\]
Complete step by step solution:
First start with the given information from the question:
Magnetic moment, $M = 1.2A{m^2}$
Distance, $d = 0.1m$
${\mu _0} = 4\pi \times {10^{ - 7}}Tm/A$
Let the magnetic field be B, is given by;
\[B = \dfrac{{{\mu _0}2M}}{{4\pi {d^3}}}\]
Putting all the values from the above, we get;
\[B = \dfrac{{4\pi \times {{10}^{ - 7}} \times 2 \times 1.2}}{{4\pi {{\left( {0.1} \right)}^3}}}\]
\[B = 2.4 \times {10^{ - 4}}T\]
Hence the correct answer is Option(B). \[\]
Note:
Use the same formula of the magnetic field no other formula will not be applicable here. Value of the all quantities was in the same unit and hence no need for unit conversion here, simply put all the values from the question in the formula of B and get the required answer.
First start with finding the relation between the magnetic moment and the magnetic field then put all the values from the question in that relation in order to get the required answer. Use the value of distance d and the ${\mu _0}$ in the relation and finally you will get the required answer.
Formula used :
magnetic field be B, is given by;
\[B = \dfrac{{{\mu _0}2M}}{{4\pi {d^3}}}\]
Complete step by step solution:
First start with the given information from the question:
Magnetic moment, $M = 1.2A{m^2}$
Distance, $d = 0.1m$
${\mu _0} = 4\pi \times {10^{ - 7}}Tm/A$
Let the magnetic field be B, is given by;
\[B = \dfrac{{{\mu _0}2M}}{{4\pi {d^3}}}\]
Putting all the values from the above, we get;
\[B = \dfrac{{4\pi \times {{10}^{ - 7}} \times 2 \times 1.2}}{{4\pi {{\left( {0.1} \right)}^3}}}\]
\[B = 2.4 \times {10^{ - 4}}T\]
Hence the correct answer is Option(B). \[\]
Note:
Use the same formula of the magnetic field no other formula will not be applicable here. Value of the all quantities was in the same unit and hence no need for unit conversion here, simply put all the values from the question in the formula of B and get the required answer.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

