
A point moves in such a way that the difference of its distance from two point \[\left( {8,0} \right)\] and \[\left( { - 8,0} \right)\] always remains \[4\]. Then the locus of the point is
A. A circle
B. A parabola
C. An ellipse
D. A hyperbola
Answer
233.1k+ views
Hint: Let at an instant, the coordinates of the moving point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] are \[\left( {8,0} \right)\] and \[\left( { - 8,0} \right)\]. Find the length of the line segments \[PA\] and \[PB\] and make an equation using the given condition and simplify the equation. After simplification replace \[h\] by \[x\] and \[k\] by \[y\]. Then identify the conic.
Formula Used:
Distance between two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Complete step-by-step solution:
Let the coordinates of the variable point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] are given as \[\left( {8,0} \right)\] and \[\left( { - 8,0} \right)\].
Let us find the lengths of the line segments \[PA\] and \[PB\]
For \[PA\], \[{x_1} = h,{y_1} = k,{x_2} = 8,{y_2} = 0\]
So, \[PA = \sqrt {{{\left( {h - 8} \right)}^2} + {{\left( {k - 0} \right)}^2}} = \sqrt {{h^2} - 16h + 64 + {k^2}} \]
For \[PB\], \[{x_1} = h,{y_1} = k,{x_2} = - 8,{y_2} = 0\]
So, \[PB = \sqrt {{{\left( {h + 8} \right)}^2} + {{\left( {k - 0} \right)}^2}} = \sqrt {{h^2} + 16h + 64 + {k^2}} \]
It is said in the question that the difference of the moving point from the two fixed points is \[4\].
So, we have
\[\left| {PA - PB} \right| = 4\]
\[ \Rightarrow PA - PB = \pm 4\]
Let us assume that \[PA - PB = 4\]
Substituting the values of \[PA\] and \[PB\] in the equation, we get
\[ \Rightarrow \sqrt {{h^2} - 16h + 64 + {k^2}} - \sqrt {{h^2} + 16h + 64 + {k^2}} = 4\]
\[ \Rightarrow \sqrt {{h^2} - 16h + 64 + {k^2}} = 4 + \sqrt {{h^2} + 16h + 64 + {k^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {\sqrt {{h^2} - 16h + 64 + {k^2}} } \right)^2} = {\left( {4 + \sqrt {{h^2} + 16h + 64 + {k^2}} } \right)^2}\]
Use the identity \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[ \Rightarrow {h^2} - 16h + 64 + {k^2} = 16 + 8\sqrt {{h^2} + 16h + 64 + {k^2}} + {h^2} + 16h + 64 + {k^2}\]
Cancel the terms \[{h^2},{k^2}\] and \[64\] from both sides.
\[ \Rightarrow - 16h = 16 + 8\sqrt {{h^2} + 16h + 64 + {k^2}} + 16h\]
\[ \Rightarrow - 32h - 16 = 8\sqrt {{h^2} + 16h + 64 + {k^2}} \]
Take out \[\left( { - 16} \right)\] as common on left side.
\[ \Rightarrow - 16\left( {2h + 1} \right) = 8\sqrt {{h^2} + 16h + 64 + {k^2}} \]
Cancel \[8\] from both sides.
\[ \Rightarrow 2\left( {2h + 1} \right) = - \sqrt {{h^2} + 16h + 64 + {k^2}} \]
Square both sides.
\[ \Rightarrow {\left\{ {2\left( {2h + 1} \right)} \right\}^2} = {\left\{ { - \sqrt {{h^2} + 16h + 64 + {k^2}} } \right\}^2}\]
\[ \Rightarrow 4{\left( {2h + 1} \right)^2} = {h^2} + 16h + 64 + {k^2}\]
Use the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[ \Rightarrow 4\left( {4{h^2} + 4h + 1} \right) = {h^2} + 16h + 64 + {k^2}\]
\[ \Rightarrow 16{h^2} + 16h + 4 = {h^2} + 16h + 64 + {k^2}\]
\[ \Rightarrow 16{h^2} - {h^2} - {k^2} + 16h - 16h + 4 - 64 = 0\]
\[ \Rightarrow 15{h^2} - {k^2} - 60 = 0\]
Replacing \[h\] by \[x\] and \[k\] by \[y\], we get
\[15{x^2} - {y^2} - 60 = 0\]
This is the equation of the locus of \[P\left( {h,k} \right)\].
Comparing the equation of the locus with the general form of a conic \[A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\], we get
\[A = 15,B = 0,C = - 1,D = 0,E = 0,F = - 60\]
Now, \[{B^2} - 4AC = {\left( 0 \right)^2} - 4\left( {15} \right)\left( { - 1} \right) = 0 + 60 = 60 > 0\]
So, \[{B^2} - 4AC > 0\]
Thus, the equation represents a hyperbola.
Hence, option D is correct.
Note: Every second degree equation in two variables represents a conic. Many students can’t remember the conditions for the equations to be of a parabola, an ellipse, a hyperbola and a circle. So, they can’t identify the equation of the conic. For parabola, \[{B^2} - 4AC = 0\] and \[A = 0\] or \[C = 0\]. For ellipse, \[{B^2} - 4AC < 0\] and \[A \ne C\]. For hyperbola, \[{B^2} - 4AC > 0\], For circle, \[{B^2} - 4AC < 0\] and \[A = C\].
Formula Used:
Distance between two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] is \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
Complete step-by-step solution:
Let the coordinates of the variable point \[P\] be \[\left( {h,k} \right)\] and the coordinates of the two fixed points \[A\] and \[B\] are given as \[\left( {8,0} \right)\] and \[\left( { - 8,0} \right)\].
Let us find the lengths of the line segments \[PA\] and \[PB\]
For \[PA\], \[{x_1} = h,{y_1} = k,{x_2} = 8,{y_2} = 0\]
So, \[PA = \sqrt {{{\left( {h - 8} \right)}^2} + {{\left( {k - 0} \right)}^2}} = \sqrt {{h^2} - 16h + 64 + {k^2}} \]
For \[PB\], \[{x_1} = h,{y_1} = k,{x_2} = - 8,{y_2} = 0\]
So, \[PB = \sqrt {{{\left( {h + 8} \right)}^2} + {{\left( {k - 0} \right)}^2}} = \sqrt {{h^2} + 16h + 64 + {k^2}} \]
It is said in the question that the difference of the moving point from the two fixed points is \[4\].
So, we have
\[\left| {PA - PB} \right| = 4\]
\[ \Rightarrow PA - PB = \pm 4\]
Let us assume that \[PA - PB = 4\]
Substituting the values of \[PA\] and \[PB\] in the equation, we get
\[ \Rightarrow \sqrt {{h^2} - 16h + 64 + {k^2}} - \sqrt {{h^2} + 16h + 64 + {k^2}} = 4\]
\[ \Rightarrow \sqrt {{h^2} - 16h + 64 + {k^2}} = 4 + \sqrt {{h^2} + 16h + 64 + {k^2}} \]
Squaring both sides, we get
\[ \Rightarrow {\left( {\sqrt {{h^2} - 16h + 64 + {k^2}} } \right)^2} = {\left( {4 + \sqrt {{h^2} + 16h + 64 + {k^2}} } \right)^2}\]
Use the identity \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[ \Rightarrow {h^2} - 16h + 64 + {k^2} = 16 + 8\sqrt {{h^2} + 16h + 64 + {k^2}} + {h^2} + 16h + 64 + {k^2}\]
Cancel the terms \[{h^2},{k^2}\] and \[64\] from both sides.
\[ \Rightarrow - 16h = 16 + 8\sqrt {{h^2} + 16h + 64 + {k^2}} + 16h\]
\[ \Rightarrow - 32h - 16 = 8\sqrt {{h^2} + 16h + 64 + {k^2}} \]
Take out \[\left( { - 16} \right)\] as common on left side.
\[ \Rightarrow - 16\left( {2h + 1} \right) = 8\sqrt {{h^2} + 16h + 64 + {k^2}} \]
Cancel \[8\] from both sides.
\[ \Rightarrow 2\left( {2h + 1} \right) = - \sqrt {{h^2} + 16h + 64 + {k^2}} \]
Square both sides.
\[ \Rightarrow {\left\{ {2\left( {2h + 1} \right)} \right\}^2} = {\left\{ { - \sqrt {{h^2} + 16h + 64 + {k^2}} } \right\}^2}\]
\[ \Rightarrow 4{\left( {2h + 1} \right)^2} = {h^2} + 16h + 64 + {k^2}\]
Use the formula \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\]
\[ \Rightarrow 4\left( {4{h^2} + 4h + 1} \right) = {h^2} + 16h + 64 + {k^2}\]
\[ \Rightarrow 16{h^2} + 16h + 4 = {h^2} + 16h + 64 + {k^2}\]
\[ \Rightarrow 16{h^2} - {h^2} - {k^2} + 16h - 16h + 4 - 64 = 0\]
\[ \Rightarrow 15{h^2} - {k^2} - 60 = 0\]
Replacing \[h\] by \[x\] and \[k\] by \[y\], we get
\[15{x^2} - {y^2} - 60 = 0\]
This is the equation of the locus of \[P\left( {h,k} \right)\].
Comparing the equation of the locus with the general form of a conic \[A{x^2} + Bxy + C{y^2} + Dx + Ey + F = 0\], we get
\[A = 15,B = 0,C = - 1,D = 0,E = 0,F = - 60\]
Now, \[{B^2} - 4AC = {\left( 0 \right)^2} - 4\left( {15} \right)\left( { - 1} \right) = 0 + 60 = 60 > 0\]
So, \[{B^2} - 4AC > 0\]
Thus, the equation represents a hyperbola.
Hence, option D is correct.
Note: Every second degree equation in two variables represents a conic. Many students can’t remember the conditions for the equations to be of a parabola, an ellipse, a hyperbola and a circle. So, they can’t identify the equation of the conic. For parabola, \[{B^2} - 4AC = 0\] and \[A = 0\] or \[C = 0\]. For ellipse, \[{B^2} - 4AC < 0\] and \[A \ne C\]. For hyperbola, \[{B^2} - 4AC > 0\], For circle, \[{B^2} - 4AC < 0\] and \[A = C\].
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

