Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 13 Statistics - 2025-26

ffImage
banner
widget title icon
Latest Updates

NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 13 Statistics - 2025-26

In NCERT Solutions for Class 11 Maths Chapter 13 Statistics Miscellaneous Exercise, you’ll explore how to read, organize, and understand data. This chapter helps you learn about mean, median, mode, and standard deviation—tools that make even confusing numbers easy to understand! If you ever wondered how to analyze information quickly or find patterns in a jumble of numbers, this chapter makes it simple.

toc-symbolTable of Content
toggle-arrow

Vedantu’s step-by-step solutions will help clear up your doubts and stop you from feeling lost with tricky sums. You can also get the latest CBSE Class 11 Maths Syllabus to see how this chapter fits with your studies. Downloadable NCERT Solutions PDFs are available, so you can revise anywhere and anytime.


This chapter is really handy if you want to score well in school and become good at interpreting data in real life. Practice regularly using these solutions and you’ll feel more confident before your exams. The topics covered here also help in exams, as Statistics and Probability together carry 12 marks in your CBSE Class 11 Maths paper.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 11 Maths Chapter 13 Statistics

Miscellaneous Exercise

1. The mean and variance of eight observations are ${\text{9}}$ and ${\text{9}}{\text{.25}}$ respectively. If six of the observations are \[{\text{6,}}\,{\text{7,10,}}\,{\text{12,}}\,{\text{12}}\] and \[{\text{13}}\], find the remaining two observations.

Ans: Consider the remaining two observations to be $x$ and $y$. Thus the eight observations are \[6,\,7,10,\,12,\,12,\,13,\,x,\,y\].

Therefore, from the mean of the data it can be obtained that,

\[\overline x  = \dfrac{{6 + 7 + \,10 + 12 + \,12 + 13 + x + y}}{8} = 9\] 

\[ \Rightarrow 60 + x + y = 72\]

\[ \Rightarrow x + y = 12\] ......(i)

Again, from the variance of the data it can be obtained that,

\[{\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \overline x } \right)}^2}} }}{N} = 9.25\]

\[\therefore \dfrac{1}{8}\left[ {{{\left( { - 3} \right)}^2} + {{\left( { - 2} \right)}^2} + {{\left( 1 \right)}^2} + {{\left( 3 \right)}^2} + {{\left( 4 \right)}^2} + {x^2} + {y^2} - (2)(9)\left( {x + y} \right) + \left( {2{{\left( 9 \right)}^2}} \right)} \right] = 9.25\]

\[ \Rightarrow \dfrac{1}{8}\left[ {9 + 4 + 9 + 16 + {x^2} + {y^2} - (18)\left( {12} \right) + 162} \right] = 9.25\]   [By, using (i)]

\[ \Rightarrow \dfrac{1}{8}\left[ {{x^2} + {y^2} - 6} \right] = 9.25\]

\[ \Rightarrow {x^2} + {y^2} = 80\] ......(ii)

Observe that form equation (i), it can be obtained that,

${x^2} + {y^2} + 2xy = 144$ ......(iii)

Also, from equations (ii) and (iii), it can be obtained that,

\[2xy = 64\] ......(iv) 

Now, on subtracting equation (iv) from equation (ii), it can be obtained that,

\[{x^2} + {y^2} - 2xy = 16\] 

\[ \Rightarrow x - y =  \pm 4\] ......(v)

It can be calculated from equations (i) and (v) that, $x = 8$ and $y = 4$, when \[x - y = 4\] and $x = 4$ and $y = 8$, when \[x - y =  - 4\]. Henceforth, the remaining two observations are $4$ and $8$.


2. The mean and variance of ${\text{7}}$ observations are ${\text{8}}$ and ${\text{16}}$ respectively. If five of the observations are \[{\text{2,}}\,{\text{4,10,}}\,{\text{12}}\] and \[{\text{14}}\]. Find the remaining two observations.

Ans: Consider the remaining two observations to be $x$ and $y$. Thus the eight observations are \[2,\,4,10,\,12,\,14,\,x,\,y\].

Therefore, from the mean of the data it can be obtained that,

\[\overline x  = \dfrac{{2 + 4 + \,10 + 12 + \,14 + x + y}}{7} = 8\] 

\[ \Rightarrow 42 + x + y = 56\]

\[ \Rightarrow x + y = 14\] ......(i)

Again, from the variance of the data it can be obtained that,

\[{\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^7 {{{\left( {{x_i} - \overline x } \right)}^2}} }}{N} = 16\]

\[\therefore \dfrac{1}{7}\left[ {{{\left( { - 6} \right)}^2} + {{\left( { - 4} \right)}^2} + {{\left( 2 \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 6 \right)}^2} + {x^2} + {y^2} - (2)(8)\left( {x + y} \right) + \left( {2{{\left( 8 \right)}^2}} \right)} \right] = 16\]

\[ \Rightarrow \dfrac{1}{7}\left[ {36 + 16 + 4 + 16 + {x^2} + {y^2} - (16)\left( {14} \right) + 128} \right] = 16\]   [By, using (i)]

\[ \Rightarrow \dfrac{1}{7}\left[ {{x^2} + {y^2} + 12} \right] = 16\]

\[ \Rightarrow {x^2} + {y^2} = 100\] ......(ii)

Observe that form equation (i), it can be obtained that,

${x^2} + {y^2} + 2xy = 196$ ......(iii)

Also, from equations (ii) and (iii), it can be obtained that,

\[2xy = 96\] ......(iv) 

Now, on subtracting equation (iv) from equation (ii), it can be obtained that,

\[{x^2} + {y^2} - 2xy = 4\] 

\[ \Rightarrow x - y =  \pm 2\] ......(v)

It can be calculated from equations (i) and (v) that, $x = 8$ and $y = 6$, when \[x - y = 2\]and $x = 6$ and $y = 8$, when \[x - y =  - 2\]. Henceforth, the remaining two observations are $6$ and $8$.


3. The mean and standard deviation of six observations are ${\text{8}}$ and ${\text{4}}$ respectively. If each observation is multiplied by ${\text{3}}$, find the new mean and new standard deviation of the resulting observations.

Ans: Assume the observations to be \[{x_1},\,{x_2},\,{x_3},\,{x_4},\,{x_5},\,{x_6}\].

Therefore, the mean of the data is,

\[\overline x  = \dfrac{{{x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6}}}{6} = 8\] 

\[ \Rightarrow \dfrac{{{x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6}}}{6} = 8\] ......(i)

Observe that when each of the observation is multiplied with $3$ and if we consider the resulting observations as ${y_i}$, then observe as shown below,

$\therefore {y_1} = 3{x_1}$ 

$ \Rightarrow {x_1} = \dfrac{1}{3}{y_1},\,\forall i = 1,\,2,\,3,\,....,\,6\& i \in {\mathbb{Z}^ + }$  

Now, the mean of the new data is,

\[\therefore \overline y  = \dfrac{{{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6}}}{6}\] 

\[ \Rightarrow \overline y  = \dfrac{{3({x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6})}}{6}\]

\[ \Rightarrow \overline y  = 3 \times 8\]      [By using (i)]

\[ \Rightarrow \overline y  = 24\]

Therefore, the standard deviation of the data is,

\[\sigma  = \sqrt {\dfrac{{\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \overline x } \right)}^2}} }}{n}}  = 4\]

\[ \Rightarrow {\left( 4 \right)^2} = \dfrac{{\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \overline x } \right)}^2}} }}{6}\]

\[ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{x_i} - \overline x } \right)}^2}}  = 96\] ......(ii)

Again, it can be observed from equations (i) and (ii) that \[\overline y  = 3\overline x \] and \[\overline x  = \dfrac{{\overline y }}{3}\] and hence on substituting the values of ${x_i}$ and $\overline x $ in equation (ii) it can be clearly obtained as shown below,

 \[\therefore \sum\limits_{i = 1}^6 {{{\left( {\dfrac{{{y_i}}}{3} - \dfrac{{\overline y }}{3}} \right)}^2}}  = 96\]

\[ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_i} - \overline y } \right)}^2}}  = 864\]

Henceforth, the standard deviation of the new data can be calculated as shown below,

\[\therefore \sigma  = \sqrt {\dfrac{{864}}{6}}  = \sqrt {144}  = 12\]


4. Given that $\overline {\text{x}} $ is the mean and $\sigma^{2}$ is the variance of ${\text{n}}$ observations ${{\text{x}}_{\text{1}}}{\text{,}}\,{{\text{x}}_{\text{2}}}{\text{,}}\,......{\text{,}}\,{{\text{x}}_{\text{n}}}$.Prove that the mean and variance of observations ${\text{a}}{{\text{x}}_{\text{1}}}{\text{,}}\,{\text{a}}{{\text{x}}_{\text{2}}}{\text{,}}\,{\text{a}}{{\text{x}}_{\text{3}}}{\text{, }}.....{\text{,}}\,{\text{a}}{{\text{x}}_{\text{n}}}$ are ${\text{a}}\overline {\text{x}} $ and ${{\text{a}}^{\text{2}}}{{\sigma}}^{\text{2}}$, respectively $\left( {{\text{a}} \ne {\text{0}}} \right)$.

Ans: Observe that the given observations are ${x_1},\,{x_2},\,......,\,{x_n}$ and the mean and variance of data is $\overline x $ and ${\sigma ^2}$ respectively.

\[\therefore {\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{y_i}{{\left( {{x_i} - \overline x } \right)}^2}} }}{n}\]......(i)

Observe that when each of the observation is multiplied with $a$ and if we consider the resulting observations as ${y_i}$, then observe as shown below,

$\therefore {y_i} = a{x_i}$ 

$ \Rightarrow {x_i} = \dfrac{1}{a}{y_i},\,\forall i = 1,\,2,\,3,\,....,\,n\& i \in {\mathbb{Z}^ + }$  

Now, the mean of the new data is,

$\therefore \overline y  = \dfrac{1}{n}\sum\limits_{i = 1}^n {{y_i}}  = \dfrac{1}{n}\sum\limits_{i = 1}^n {a{x_i}}  = \dfrac{a}{n}\sum\limits_{i = 1}^n {{x_i}}  = a\overline x \,\,\,\,\,\,\,\left[ {\because \overline x  = \dfrac{1}{n}\sum\limits_{i = 1}^n {{x_i}} } \right]$ 

Again on substituting the values of ${x_i}$ and $\overline x $ in equation (i) it can be clearly obtained as shown below,

 \[\therefore {\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {\dfrac{{{y_i}}}{a} - \dfrac{{\overline y }}{a}} \right)}^2}} }}{n}\]

\[ \Rightarrow {a^2}{\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{y_i} - \overline y } \right)}^2}} }}{n}\]

Henceforth, it can be clearly proved that the mean and variance of the new data is $a\overline x $ and ${a^2}{\sigma ^2}$, respectively.


5. The mean and standard deviation of ${\text{20}}$ observations are found to be ${\text{10}}$ and ${\text{2}}$, respectively. On rechecking it was found that an observation ${\text{8}}$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

(i) If wrong item is omitted 

Ans: Observe that the incorrect number of observations, incorrect mean and the incorrect standard deviation are $20$, $10$ and $2$, respectively. ${x_1},\,{x_2},\,......,\,{x_n}$ and the mean and variance of data is $\overline x $ and ${\sigma ^2}$ respectively.

\[\therefore \overline x  = \dfrac{{\sum\limits_{i = 1}^{20} {{x_i}} }}{n} = 10\] 

\[ \Rightarrow \dfrac{{\sum\limits_{i = 1}^{20} {{x_i}} }}{{20}} = 10\] 

\[ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}}  = 200\]

Now, the correct mean is,

\[\therefore \overline x  = \dfrac{{\sum\limits_{i = 1}^{19} {{x_i}} }}{n}\] 

\[ \Rightarrow \overline x  = \dfrac{{192}}{{19}} = 10.1\,\,\,\,\,\left[ {\because \sum\limits_{i = 1}^{19} {{x_i}}  = 192} \right]\]

Again observe as shown below,

\[\therefore \sigma  = \sqrt {\dfrac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} }  = 2\]

\[ \Rightarrow 4 = \dfrac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} \]

\[ \Rightarrow 2080 = \sum\limits_{i = 1}^{20} {{x_i}^2} \]

Therefore, the correct standard deviation of the data is,

\[\sum\limits_{i = 1}^{20} {{x_i}^2}  - {\left( 8 \right)^2}\]

\[ \Rightarrow 2080 - 64\]

\[ \Rightarrow 2016\]

\[\therefore \sigma  = \sqrt {\dfrac{{\sum\limits_{i = 1}^{19} {{x_i}^2} }}{n} - {{\left( {\overline x } \right)}^2}} \] 

\[ \Rightarrow \sigma  = \sqrt {\dfrac{{2016}}{{19}} - {{\left( {10.1} \right)}^2}} \]

\[ \Rightarrow \sigma  = \sqrt {1061.1 - 102.1}  = \sqrt {4.09}  = 2.02\]


(ii) If it is replaced by ${\text{12}}$.  

Ans: Observe that the incorrect sum of observations is $200$.

\[\therefore \sum\limits_{i = 1}^{20} {{x_i}}  = 200 - 8 + 12 = 204\]

Now, the correct mean is,

\[\therefore \overline x  = \dfrac{{\sum\limits_{i = 1}^{20} {{x_i}} }}{n}\] 

\[ \Rightarrow \overline x  = \dfrac{{204}}{{20}} = 10.2\,\,\,\,\,\left[ {\because \sum\limits_{i = 1}^{20} {{x_i}}  = 204} \right]\]

Again observe as shown below,

\[\therefore \sigma  = \sqrt {\dfrac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} }  = 2\]

\[ \Rightarrow 4 = \dfrac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} \]

\[ \Rightarrow 2080 = \sum\limits_{i = 1}^{20} {{x_i}^2} \]

Therefore, the correct standard deviation of the data is,

\[\sum\limits_{i = 1}^{20} {{x_i}^2}  - {\left( 8 \right)^2} + {\left( {12} \right)^2}\]

\[ \Rightarrow 2080 - 64 + 144\]

\[ \Rightarrow 2160\]

\[\therefore \sigma  = \sqrt {\dfrac{{\sum\limits_{i = 1}^{20} {{x_i}^2} }}{n} - {{\left( {\overline x } \right)}^2}} \] 

\[ \Rightarrow \sigma  = \sqrt {\dfrac{{2160}}{{20}} - {{\left( {10.2} \right)}^2}} \]

\[ \Rightarrow \sigma  = \sqrt {108 - 104.04}  = \sqrt {3.96}  = 1.98\]


6. The mean and standard deviation of a group of ${\text{100}}$ observations were found to be ${\text{20}}$ and ${\text{3}}$, respectively. Later on it was found that ${\text{3}}$ observations are incorrect which were recorded as ${\text{21,}}\,{\text{21}}$ and ${\text{18}}$. Find the mean and standard deviation if the incorrect  observations are omitted.

Ans: Observe that the number of observations, incorrect mean and the incorrect standard deviation are $100$, $20$ and $3$, respectively. ${x_1},\,{x_2},\,......,\,{x_n}$ and the mean and variance of data is $\overline x $ and ${\sigma ^2}$ respectively.

\[\therefore \overline x  = \dfrac{{\sum\limits_{i = 1}^{100} {{x_i}} }}{n} = 20\] 

\[ \Rightarrow \dfrac{{\sum\limits_{i = 1}^{100} {{x_i}} }}{{100}} = 20\] 

\[ \Rightarrow \sum\limits_{i = 1}^{100} {{x_i}}  = 2000\]

Now, the correct mean is,

\[\therefore \overline x  = \dfrac{{\sum\limits_{i = 1}^{97} {{x_i}} }}{n}\] 

\[ \Rightarrow \overline x  = \dfrac{{2000 - 60}}{{97}} = 20\,\,\,\,\,\left[ {\because \sum\limits_{i = 1}^{97} {{x_i}}  = 1940} \right]\]

Again observe as shown below,

\[\therefore \sigma  = \sqrt {\dfrac{1}{{100}}\sum\limits_{i = 1}^{100} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} }  = 3\]

\[ \Rightarrow 9 = \dfrac{1}{{100}}\sum\limits_{i = 1}^{100} {{x_i}^2 - {{\left( {\overline x } \right)}^2}} \]

\[ \Rightarrow 40900 = \sum\limits_{i = 1}^{100} {{x_i}^2} \]

Therefore, the correct standard deviation of the data is,

\[\sum\limits_{i = 1}^{100} {{x_i}^2}  - (2){\left( {21} \right)^2} - {(18)^2}\]

\[ \Rightarrow 40900 - 1206\]

\[ \Rightarrow 39694\]

\[\therefore \sigma  = \sqrt {\dfrac{{\sum\limits_{i = 1}^{97} {{x_i}^2} }}{n} - {{\left( {\overline x } \right)}^2}} \] 

\[ \Rightarrow \sigma  = \sqrt {\dfrac{{39694}}{{97}} - {{\left( {20} \right)}^2}} \]

\[ \Rightarrow \sigma  = \sqrt {409.22 - 400}  = \sqrt {9.22}  = 3.04\].


Conclusion

NCERT Solutions for Statistics Class 11 Miscellaneous Exercise, are crucial for understanding how to work with data effectively. This chapter teaches methods like finding averages (mean, median, mode) and measures of spread (standard deviation) to analyze data accurately. It's important to focus on practicing these methods to become proficient in interpreting data and making informed decisions. By mastering these statistical techniques, students develop practical skills that are applicable across various fields, from business analytics to scientific research.


Class 11 Maths Chapter 13: Exercises Breakdown

Exercise

Number of Questions

Exercise 13.1

12 Questions & Solutions

Exercise 13.2

10 Questions & Solutions


CBSE Class 11 Maths Chapter 13 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Miscellaneous Exercise Chapter 13 Statistics - 2025-26

1. Does a larger standard deviation mean the data is of poor quality?

No, a larger standard deviation (SD) simply indicates that the data points are more spread out from the mean, signifying greater variability or less consistency, not necessarily poor quality.




2. Are NCERT solutions for Statistics Class 11 just a list of final answers?

No, NCERT Solutions for the Class 11 Maths Chapter 13 miscellaneous exercise provide complete, step-by-step explanations for every problem. They detail the formulas used, calculations, and the logic behind each step, unlike a simple answer key that only gives the final result.


3. Can you compare the variability of two datasets using only their standard deviations?

No, you cannot reliably compare the consistency of two different series using only their standard deviations, especially if their means are significantly different. The correct tool for this comparison is the Coefficient of Variation (CV).



4. Is it considered cheating to use miscellaneous exercise Class 11 Chapter 13 solutions?

No, using solutions as a verification tool is an effective learning strategy, not cheating. They are designed to help you check your own work, understand difficult steps, and correct mistakes. First, attempt the problem yourself, then use the solutions to refine your method.


5. What is actually included in a PDF of the NCERT Solutions for Class 11 Maths Chapter 13?

No, using solutions as a verification tool is an effective learning strategy, not cheating. They are designed to help you check your own work, understand difficult steps, and correct mistakes. First, attempt the problem yourself, then use the solutions to refine your method.



6. If I add 5 to every number in a dataset, will the standard deviation increase?

No, adding or subtracting a constant value from every observation in a dataset does not change its standard deviation or variance. The spread of the data relative to itself remains exactly the same; the entire dataset just shifts on the number line.


7. How does a Free PDF of Statistics Class 11 miscellaneous solutions help with exam revision?

A Free PDF of the Statistics miscellaneous solutions Class 11 acts as an essential resource for self-assessment and focused practice before exams. It allows you to instantly verify your methods without needing external help.




8. Can the variance of a dataset be a negative number?

No, variance is always non-negative (zero or positive). It is calculated by averaging the squared differences of each data point from the mean. Since the square of any real number is non-negative, their average can never be negative. Variance is zero only if all data points are identical.


9. Is mean deviation about the mean the same as mean deviation about the median?

No, the mean deviation calculated about the mean is generally not the same as the mean deviation calculated about the median. A key property of mean deviation is that its value is the minimum when calculated from the median.


The confusion arises because both measures use absolute deviations and can sometimes yield similar values, but their underlying calculation is different.



10. Can I skip to the miscellaneous exercise if I feel confident about Statistics?

No, it is highly recommended to solve the preceding exercises in Chapter 13 before attempting the miscellaneous exercise. The miscellaneous questions are designed to be more complex and often integrate concepts from the entire chapter, so a strong foundation is necessary for success.