Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 12 - Limits and Derivatives Exercise 12.1

ffImage
Last updated date: 24th Jul 2024
Total views: 601.8k
Views today: 7.01k

NCERT Solutions for Maths Exercise 12.1 Class 11 Chapter 12 - FREE PDF Download

Chapter 12 Limits and derivatives form the foundation of calculus is an essential branch of mathematics. NCERT Solutions for Class 11 Maths Chapter 12 Exercise 12.1 the concept of limits, focusing on understanding how a function behaves as the input approaches a particular point. This exercise is crucial as it sets the stage for more complex topics in calculus.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Exercise 12.1 Class 11 Chapter 12 - FREE PDF Download
2. Glance on NCERT Class 11 Maths Chapter 12 Exercise 12.1 Solutions  | Vedantu
3. Formulas Used in Class 11 Chapter 12 Exercise 12.1
4. Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives
    4.1Exercise 12.1
5. Class 11 Maths Chapter 12: Exercises Breakdown
6. CBSE Class 11 Maths Chapter 12 Other Study Materials
7. Chapter-Specific NCERT Solutions for Class 11 Maths
FAQs


Class 11 maths NCERT solutions chapter 12 exercise 12.1 is vital for solving advanced problems in calculus and other mathematical fields. Student can also find the latest CBSE Class 11 Maths Syllabus solved by Vedantu’s team of master teachers in detailed step-by-step manner to ensure complete understanding of the approach, hence get them full marks.


Glance on NCERT Class 11 Maths Chapter 12 Exercise 12.1 Solutions  | Vedantu

  • Class 11 Chapter 12 explains the foundational concepts of limits and derivatives essential for understanding calculus. 

  • Understanding limits helps in analysing the behaviour of functions near specific points, especially where they might not be explicitly defined. It covers techniques for calculating limits, such as direct substitution and the use of limit laws.

  • It contains the formulas and techniques to calculate limits for different functions. 

  • Understanding these concepts provides a foundation for solving more complex problems in calculus and its applications in science and engineering.

  • Exercise 12.1 contains 32 Questions to practise this concept.


Formulas Used in Class 11 Chapter 12 Exercise 12.1

Limits Formula

To express a function's limit, we represent it as:


$\lim_{x\to a}f(x)$


Left Hand and Right-Hand Limits

  • $f(a-0) = \lim_{x\to a^{-}}f(x) = \lim_{h\to 0}f(a-h)$

  • $f(a+0) = \lim_{x\to a{+}}f(x) = \lim_{h\to 0}f(a+h)$


Existence of Limit

$\lim_{x\to a}f(x)$ exists, if


(i) $\lim_{x\to a^{-}}f(x)$ and $\lim_{x\to a^{+}}f(x)$ both exists

(ii) $\lim_{x\to a^{-}}f(x) = \lim_{x\to a^{+}}f(x)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 12 - Limits and Derivatives

Exercise 12.1

1. Evaluate the Given limit.$\underset{x\to 3}{\mathop{\lim }}\,x+3$ 

Ans. Given,

 $\underset{x\to 3}{\mathop{\lim }}\,x+3$

=$3+3$

=$6$


2. Evaluate the Given limit.$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$ 

Ans. Given,

$\underset{x\to \pi }{\mathop{\lim }}\,\left( x-\frac{22}{7} \right)$

=\[\left( \pi -\frac{22}{7} \right)\]


3. Evaluate the Given limit. $\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$

Ans. Given,

$\underset{r\to 1}{\mathop{\lim }}\,\pi {{r}^{2}}$

=\[\pi ({{1}^{2}})\]

=\[\pi \]


4. Evaluate the Given limit.\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{4x+3}{x-2}\]

=$\frac{4(4)+3}{4-2}$ 

=$\frac{16+3}{2}$ 

=$\frac{19}{2}$ 


5. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{10}}+{{x}^{5}}+1}{x-1}\]

=$\frac{{{(-1)}^{10}}+{{(-1)}^{5}}+1}{-1-1}$ 

=$\frac{1-1+1}{-2}$ 

=$-\frac{1}{2}$ 


6. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

Put $x+1=y$ So,

$y\to 1$ as $x\to 0$ 

Than, \[\underset{x\to 0}{\mathop{\lim }}\,\frac{(x+1)_{{}}^{5}-1}{x}\]

=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{(y)_{{}}^{5}-1}{y-1}\]

Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]

=${{5.1}^{5-1}}$

=$5$


7. Evaluate the Given limit. \[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]

Ans. At $x=2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3{{x}^{2}}-x-10}{{{x}^{2}}-4}\]

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{(x-2)(3x+5)}{(x-2)(x+2)}\]

=\[\underset{x\to 2}{\mathop{\lim }}\,\frac{3x+5}{x+2}\]

=\[\frac{3(2)+5}{2+2}\]

=$\frac{11}{4}$


8. Evaluate the Given limit. \[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]

Ans. At $x=2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{{{x}^{4}}-81}{2{{x}^{2}}-5x-3}\]

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x-3)(x+3)({{x}^{2}}+9)}{(x-3)(2x+1)}\]

=\[\underset{x\to 3}{\mathop{\lim }}\,\frac{(x+3)({{x}^{2}}+9)}{(2x+1)}\]

=\[\frac{(3+3)({{3}^{2}}+9)}{(2(3)+1)}\]

=\[\frac{6\times 18}{7}\]

=\[\frac{108}{7}\]


9. Evaluate the Given limit.\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+b}{cx+1}\]

=\[\frac{a(0)+b}{c(0)+1}\]

=\[b\]


10. Evaluate the Given limit.\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]

Ans. At $z=1$

The value of the given rational function takes the form \[\frac{0}{0}\] 

Put ${{z}^{\frac{1}{6}}}=x$ So,

$z\to 1$ as $x\to 1$ 

Than,\[\underset{z\to 1}{\mathop{\lim }}\,\frac{{{z}^{\frac{1}{3}}}-1}{{{z}^{\frac{1}{6}}}-1}\]

=\[\underset{x\to 1}{\mathop{\lim }}\,\frac{{{x}^{2}}-1}{{{x}^{{}}}-1}\]

Using \[\left[ \underset{x\to a}{\mathop{\lim }}\,\frac{x_{{}}^{n}-{{a}^{n}}}{x-a}=n{{a}^{n-1}} \right]\]

=${{2.1}^{2-1}}$

=$2$


 11. Evaluate the Given limit. \[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\],\[a+b+c\ne 0\]

Ans. Given,

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{a{{x}^{2}}+bx+c}{c{{x}^{2}}+bx+a}\]

=\[\frac{a{{(1)}^{2}}+b(1)+c}{c{{(1)}^{2}}+b(1)+a}\]

=\[\frac{a+b+c}{c+b+a}\]

=$1$                    \[(a+b+c\ne 0)\]


12. Evaluate the Given limit. \[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]

Ans. Given,

\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]

At $x=-2$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\frac{1}{x}+\frac{1}{2}}{x+2}\]=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{\left( \frac{2+x}{2x} \right)}{x+2}\]

=\[\underset{x\to -2}{\mathop{\lim }}\,\frac{1}{2x}\]

=\[\frac{1}{2(-2)}\]

=\[-\frac{1}{4}\]


13. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{bx}\times \frac{ax}{ax}\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\times \frac{a}{b}\]

=\[\frac{a}{b}\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{bx} \right)\]

$x\to 0\Rightarrow ax\to 0$ 

=\[\frac{a}{b}\times 1\]\[\]         $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right) \right]$ 

=\[\frac{a}{b}\]


14. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]

Ans.Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx},a,b\ne 0\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax}{\sin bx}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)\times ax}{\left( \frac{\sin ax}{ax} \right)\times bx}\]

=\[\frac{a}{b}\times \frac{\underset{ax\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}{\underset{bx\to 0}{\mathop{\lim }}\,\left( \frac{\sin ax}{ax} \right)}\]         $\left[ \begin{align} & x\to 0\Rightarrow ax\to 0 \\ & x\to 0\Rightarrow bx\to 0 \\ \end{align} \right]$

=\[\frac{a}{b}\times \frac{1}{1}\]                   $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

=\[\frac{a}{b}\]


15. Evaluate the Given limit. \[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]

Ans. Given,

\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}\]

$\left[ x\to \pi \Rightarrow (\pi -x)\to 0 \right]$

\[\underset{x\to \pi }{\mathop{\lim }}\,\frac{\sin (\pi -x)}{\pi (\pi -x)}=\frac{1}{\pi }\underset{(\pi -x)\to 0}{\mathop{\lim }}\,\frac{\sin (\pi -x)}{(\pi -x)}\]

$=\frac{1}{\pi }\times 1$                      $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

$=\frac{1}{\pi }$


16. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{cosx}{\pi -x}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\operatorname{cosx}}{\pi -x}\]

=\[\frac{\cos 0}{\pi -0}\]

=\[\frac{1}{\pi }\]


17. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\cos 2x-1}{\cos x-1}=\underset{x\to 0}{\mathop{\lim }}\,\frac{1-2{{\sin }^{2}}x-1}{1-2{{\sin }^{2}}\frac{x}{2}-1}\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{\sin }^{2}}\frac{x}{2}}=\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times {{x}^{2}}}{\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)\times \frac{{{x}^{2}}}{4}}\]

=\[4\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}\]

=\[4\frac{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}x}{{{x}^{2}}} \right)}^{2}}^{{}}}{{{\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{{{\sin }^{2}}\frac{x}{2}}{{{\left( \frac{x}{2} \right)}^{2}}} \right)}^{2}}}\]

$\left[ x\to 0\Rightarrow \frac{x}{2}\to 0 \right]$

=\[4\frac{{{1}^{2}}^{{}}}{{{1}^{2}}}\]         $\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin y}{y} \right)=1 \right]$

=\[4\]   


18. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]

Ans.Given,

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}\]

At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{ax+x\cos x}{b\sin x}=\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\frac{x(a+\cos x)}{\sin x}\]

\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{\sin x} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]

=\[\frac{1}{b}\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)} \right)\times \underset{x\to 0}{\mathop{\lim }}\,\left( a+\cos x \right)\]

=\[\frac{1}{b}\times \left( a+\cos 0 \right)\]               $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{a+1}{b}\]         


19. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]

Ans. Given,

\[\underset{x\to 0}{\mathop{\lim }}\,x\sec x\]

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{\cos x}\]        

  =\[\frac{0}{\cos 0}\]

=\[\frac{0}{1}\]

=\[0\]


20. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]\[a,b,a+b\ne 0\]

Ans. At $x=0$

The value of the given rational function takes the form \[\frac{0}{0}\] 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin ax+bx}{ax+\sin bx}\]

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{\sin ax}{ax} \right)ax+bx}{ax+bx\left( \frac{\sin bx}{bx} \right)}\]        

  =\[\frac{\left( \underset{x\to \infty }{\mathop{\lim }}\,\frac{\sin ax}{ax} \right)\times \underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx\left( \underset{x\to 0}{\mathop{\lim }}\,\frac{\sin bx}{bx} \right)}\]

\[\left[ x\to \pi \Rightarrow ax\to 0 \right]\] and \[\left[ bx\to 0 \right]\]

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax)+\underset{x\to 0}{\mathop{\lim }}\,(bx)}{\underset{x\to 0}{\mathop{\lim }}\,ax+\underset{x\to 0}{\mathop{\lim }}\,bx}\]         $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}{\underset{x\to 0}{\mathop{\lim }}\,(ax+bx)}\]   

  =\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]         

  =\[1\]         


21. Evaluate the Given limit. \[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]

Ans. At $x=0$

The value of the given rational function takes the form \[\infty \to \infty \] 

\[\underset{x\to 0}{\mathop{\lim }}\,(\operatorname{cosecx}-cotx)\]

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1}{\sin x}-\frac{\cos x}{\sin x} \right)\]         

  =\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{\sin x} \right)\]       

  =\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\left( \frac{1-\cos x}{x} \right)}{\left( \frac{\sin x}{x} \right)}\]         

  =\[\frac{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{1-\cos x}{x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\sin x}{x} \right)}\]   

$\left[ \underset{y\to 0}{\mathop{\lim }}\,\frac{1-\cos x}{x}=0 \right]$ and $\left[ \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]$

  =\[\frac{0}{1}\]        

  =\[0\]               


22. Evaluate the Given limit. \[\underset{x\to \frac{\pi }{2}}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]

Ans. Given, 

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}\]

At $x=\frac{\pi }{2}$

The value of the given rational function takes the form \[\frac{0}{0}\] 

Put $x-\frac{\pi }{2}=y$ 

So,\[\left[ x\to \frac{\pi }{2},y\to 0 \right]\]

\[\underset{x\to 0}{\mathop{\lim }}\,\frac{\tan 2x}{x-\frac{\pi }{2}}=\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2\left( y+\frac{\pi }{2} \right)}{y}\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan (\pi +2y)}{y}\]       

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\tan 2y}{y}\]    \[\left[ \tan (\pi +2y)=\tan 2y \right]\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\frac{\sin 2y}{y\cos 2y}\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y}\times \frac{2}{\cos 2y} \right)\]

  =\[\underset{y\to 0}{\mathop{\lim }}\,\left( \frac{\sin 2y}{2y} \right)\times \underset{y\to 0}{\mathop{\lim }}\,\left( \frac{2}{\cos 2y} \right)\]  \[\left[ y\to 0\Rightarrow 2y\to 0 \right]\]

  =\[1\times \frac{2}{\cos 0}\]    \[\left[ \underset{x\to 0}{\mathop{\lim }}\,\left( \frac{\operatorname{sinx}}{x} \right)=1 \right]\]

  =\[1\times \frac{2}{1}\]

  =\[2\]


23. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\]  $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$

Ans. Given.

\[f(x)=\left\{ \begin{align} & 2x+3 \\ & 3(x+1) \\ \end{align} \right.\]    $\begin{align} & x\le 0 \\ & x>0 \\ \end{align}$

\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 2x+3 \right]\] 

  =\[2(0)+3=3\]

\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\left[ 3x+1 \right]\] 

  =\[3(0+1)=3\]

Therefore,

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,f(x)=3$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,(x+1)=3(1+1)=6$

Therefore,

$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)=6$


24. Find $\underset{x\to 1}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\]   $\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$

Ans. Given, 

\[f(x)=\left\{ \begin{align} & {{x}^{2}}-1 \\ & -x-1 \\ \end{align} \right.\]     $$\begin{align} & x\le 1 \\ & x>1 \\ \end{align}$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,({{x}^{2}}-1)={{1}^{2}}-1=1-1=0$

So, it is observed that 

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)$ 

Hence, $\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


25. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\]    $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

Ans. Given

\[f(x)=\left\{ \begin{align} & \frac{\left| x \right|}{x} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\]    when x is negative, $\left| x \right|=-x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]

=\[-1\]

$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{\left| x \right|}{x} \right]$     

=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$

 when x is positive, $\left| x \right|=x$ 

=$\underset{x\to 0}{\mathop{\lim }}\,(1)$

=\[1\]

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


26. Find $\underset{x\to 0}{\mathop{\lim }}\,f(x)$, where \[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$

Ans. Given

\[f(x)=\left\{ \begin{align} & \frac{x}{\left| x \right|} \\ & 0 \\ \end{align} \right.\] $\begin{align} & x\ne 0 \\ & x=0 \\ \end{align}$ 

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$

=\[\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{-x}{x} \right)\]    when x is negative, $\left| x \right|=-x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(-1)\]

=\[-1\]

 $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \frac{x}{\left| x \right|} \right]$   
=$\underset{x\to 0}{\mathop{\lim }}\,\left( \frac{x}{x} \right)$

 when x is positive, $\left| x \right|=x$ 

=\[\underset{x\to 0}{\mathop{\lim }}\,(1)\]

=\[1\]

$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to {{0}^{{}}}}{\mathop{\lim }}\,f(x)$ does not exist.


27. Find $\underset{x\to 5}{\mathop{\lim }}\,f(x),$ where $f(x)=\left| x \right|-5$ 

Ans. Given,

 $f(x)=\left| x \right|-5$

$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,(\left| x \right|-5)$ 

= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$    when x is positive, $\left| x \right|=x$ 

= $5-5$ 

= $0$ 

$\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,(\left| x \right|-5)$ 

= $\underset{x\to 5}{\mathop{\lim }}\,(x-5)$ 

when x is positive, $\left| x \right|=x$ 

= $5-5$ 

= $0$ 

$\underset{x\to {{5}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{5}^{+}}}{\mathop{\lim }}\,f(x)$

Hence, $\underset{x\to 5}{\mathop{\lim }}\,f(x)=0$ 


28. Suppose $f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$   $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$and if $\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$what are possible values of a and b?

Ans. The given function is

$f(x)=\left\{ \begin{align} & a+bx \\ & 4 \\ & b-ax \\ \end{align} \right.$ $\begin{align} & x<0 \\ & x=1 \\ & x>1 \\ \end{align}$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(ax+bx)=a+b$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(b-ax)=b-a$

$f(1)=4$

Given

$\underset{x\to 1}{\mathop{\lim }}\,f(x)=f(1)$ 

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{{}}}}{\mathop{\lim }}\,f(x)=f(1)$

$a+b=4$and $b-a=4$

On solving,we get

$a=0$and $b=4$


29. Let a1,a2,……an be fixed real number and define a fuction

$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$ 

What is $\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)$ ? For some a$\ne $ a1, a2,…..,an. Compute $\underset{x\to a}{\mathop{\lim }}\,f(x)$.

Ans. Given,

$f(x)=(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})$

$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$

=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})=0\]

Therefore,

$\underset{x\to {{a}_{1}}}{\mathop{\lim }}\,f(x)=0$

Now, $\underset{x\to a}{\mathop{\lim }}\,f(x)=\underset{x\to a}{\mathop{\lim }}\,[(x-{{a}_{1}})(x-{{a}_{2}})....(x-{{a}_{n}})]$

=\[({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})\]

Therefore,

$\underset{x\to a}{\mathop{\lim }}\,f(x)=({{a}_{1}}-{{a}_{1}})({{a}_{1}}-{{a}_{2}})......({{a}_{1}}-{{a}_{n}})$


30. If \[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$

For what value (s) of does $\underset{x\to a}{\mathop{\lim }}\,f(x)$  exists? 

Ans. Given,

 \[f(x)=\left\{ \begin{align} & \left| x \right|+1 \\ & 0 \\ & \left| x \right|-1 \\ \end{align} \right.\] $\begin{align} & x<0 \\ & x=0 \\ & x>1 \\ \end{align}$ 

When $a=0$ 

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -x+1 \right)\]     when x is negative, $\left| x \right|=-x$ 

=$0+1$

=$1$ 

=\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \left| x \right|+1 \right)\]

=\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( x-1 \right)\]     when x is positive, $\left| x \right|=x$ 

=$0-1$

=$-1$ 

Here, $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$ 

$\underset{x\to 0}{\mathop{\lim }}\,f(x)$ does not exist.

When\[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)\] $a<0$

\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)\]

=\[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(-x+1)\]           $[x<a<0\Rightarrow \left| x \right|=-x]$

=\[-a+1\]

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=-a+1$ 

Thus, limit exists at $x=a$, where \[a<0\]

When \[a>0\]

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,(\left| x \right|+1)$

=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$                         $[0<x<a\Rightarrow \left| x \right|=x]$

=$-a-1$

$\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,(\left| x \right|+1)$

=$\underset{x\to a}{\mathop{\lim }}\,(-x-1)$                         $[0<x<a\Rightarrow \left| x \right|=x]$

=$a-1$

$\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f(x)=a-1$

Thus, limit exists at $x=a$, where \[a>0\]

Thus $\underset{x\to a}{\mathop{\lim }}\,f(x)$ exists for all $a\ne 0$$\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi $.


31. If function f(x) satisfies, \[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \], evaluate $\underset{x\to 1}{\mathop{\lim }}\,f(x)$

Ans. Given, 

\[\underset{x\to 1}{\mathop{\lim }}\,\frac{f(x)-2}{{{x}^{2}}-1}=\pi \]

= $\frac{\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)}{\underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)}=\pi $

= $\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi \underset{x\to 1}{\mathop{\lim }}\,({{x}^{2}}-1)$

=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=\pi ({{1}^{2}}-1)$

=$\underset{x\to 1}{\mathop{\lim }}\,(f(x)-2)=0$

=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-\underset{x\to 1}{\mathop{\lim }}\,2=0$

=$\underset{x\to 1}{\mathop{\lim }}\,f(x)-2=0$

$\underset{x\to 1}{\mathop{\lim }}\,f(x)=2$


32. If $f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$

For what integers m and n does $\underset{x\to 0}{\mathop{\lim }}\,f(x)$ and $\underset{x\to 1}{\mathop{\lim }}\,f(x)$ exists?

Ans. Given,  

$f(x)=\left\{ \begin{align} & m{{x}^{2}}+n \\ & nx+m \\ & n{{x}^{3}}+m \\ \end{align} \right.$ $\begin{align} & x<0 \\ & 0\le x\le 1 \\ & x>1 \\ \end{align}$\[\underset{x\to 0}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(m{{x}^{2}}+n)\]

=$m{{(0)}^{2}}+n$

=$n$

$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,(nx+m)$

=$n{{(0)}^{{}}}+m$

=$m$

Thus, $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)$exists if m=n

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(nx+m)$

=$n(1)+m$

=$m+n$

$\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,(n{{x}^{3}}+m)$

=$n{{(1)}^{3}}+m$

=$m+n$

$\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 1}{\mathop{\lim }}\,f(x)$

Thus, $\underset{x\to 1}{\mathop{\lim }}\,f(x)$exists for any internal value of  m and n


Conclusion 

Calculating limits for polynomial and rational functions involves substitution and simplifying expressions. Understanding Left Hand Limits (LHL) and Right Hand Limits (RHL) is crucial for analysing function behaviour at specific points. Limits for trigonometric functions uses geometric proof of the important inequalities relating trigonometric functions. The Sandwich Theorem helps find limits by bounding a function between two known limits. Focus on mastering these methods, as they are fundamental for calculus. Previous year question papers typically have 3-4 questions on limits, emphasizing their importance in exams. Practice these concepts thoroughly to excel in your studies.


Class 11 Maths Chapter 12: Exercises Breakdown

Exercise

Number of Questions

Exercise 12.2

11 Questions and Solutions

Miscellaneous Exercise

30 Questions and Solutions


CBSE Class 11 Maths Chapter 12 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


FAQs on NCERT Solutions for Class 11 Maths Chapter 12 - Limits and Derivatives Exercise 12.1

1. What are limits taught in Class 11 Chapter 12 Mathematics?

A limit is the value that a function approaches as the input approaches a particular point.

2. Why are limits important?

Limits help in understanding the behaviour of functions near specific points, which is fundamental in calculus.

3. How do you calculate the limit of a polynomial function in Class 11 Chapter 12 Exercise 12.1 Questions?

For polynomial functions, you can often find the limit by direct substitution of the value into the function.

4. What is the Sandwich Theorem in Exercise 12.1 Class 11 Maths Chapter 12?

The Sandwich Theorem helps find the limit of a function by bounding it between two other functions whose limits are known.

5. What are Left Hand Limits (LHL) and Right Hand Limits (RHL)?

LHL and RHL are the values that a function approaches as the input approaches a point from the left and right, respectively.

6. How do you find the limit of a rational function in Class 11 Chapter 12 Exercise 12.1 Questions?

For rational functions, you simplify the function and then substitute the value into it.

7. Why should I download Vedantu NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths?

The reasons why students should download the NCERT Solutions for Limits and Derivatives Class 11 Exercise 12.2 of Maths are that it is first of all framed by the experts of Vedantu. Apart from that, the CBSE board recommends the students refer to the NCERT textbooks, which are one of the best study materials from the exam perspective. So, that is why NCERT Solutions plays a vital role, as the answers to all the questions from the exercise are available in one place. The subject matter experts have provided answers in a detailed manner, helping the students to score well in the exams.

8. Are NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths the best study material for the students during revision?

Yes, Vedantu NCERT Solutions for Exercise 12.2 of Chapter 12 of Class 11 Maths are the most reliable study resources for the students. It helps the students to learn and revise complex concepts easily. Every solution is provided with an explanation to make learning easier for the students. The experts have designed the stepwise solutions to encourage the analytical thinking approach among the students. During exam time, it will help them to save a lot of time by giving a quick revision of all the methods and formulas.

9. Why is understanding limits important in calculus?

Understanding limits is crucial in calculus because they form the foundation for defining derivatives and integrals, which are the primary concepts in calculus.

10. How many questions on limits were asked in previous year exams?

Typically, 3–4 questions on limits appear in previous year exams.

11. What should I focus on while studying NCERT Questions of Class 11 Maths Chapter 12?

Focus on understanding and applying different methods to calculate limits, such as substitution, simplification, and using the Sandwich Theorem.

12. Can limits exist at points where the function is not defined?

Yes, as we studied in ​​Exercise 12.2 Class 11 Maths, limits can exist at points where the function itself is not defined. The limit describes the behaviour of the function as it approaches that point, even if the function does not have a value at the point.

13. What is an indeterminate form explained in exercise 12.2 class 11 maths?

An indeterminate form is an expression that does not have a well-defined value, such as $\frac{0}{0}$ or $\frac{\infty}{\infty}$​. Special techniques like factoring or rationalizing are needed to evaluate limits involving indeterminate forms.