Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 13: Limits and Derivatives - Exercise 13.2

ffImage
Last updated date: 25th Apr 2024
Total views: 574.2k
Views today: 5.74k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives

Free PDF download of NCERT Solutions for Class 11 Maths Chapter 13 Exercise 13.2 (Ex 13.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 11 Maths Chapter 13 Limits and Derivatives Exercise 13.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails.


Class:

NCERT Solutions for Class 11

Subject:

Class 11 Maths

Chapter Name:

Chapter 13 - Limits and Derivatives

Exercise:

Exercise - 13.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Competitive Exams after 12th Science

Access NCERT Solutions for Class-11 Maths Chapter- 13- Limits and Derivatives

Exercise 13.2

1. Find the derivative of \[{x^2} - 2\]at $x = 10$

Ans: Let $f\left( x \right) = {x^2} - 2$

Accordingly,

$f'\left( 10 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 10+h \right)-f\left( 10 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {10 + h} \right)}^2} - 2} \right] - \left( {{{10}^2} - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{{10}^2} + \left( {2 \times 10 \times h} \right) + {h^2} - 2 - {{10}^2} + 2}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{20h + {h^2}}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {20 + h} \right) = 20 + 0 = 20$

Thus, the derivative of ${x^2} - 2$at $x = 10$is $20$


2. Find the derivative of $99x$at $x = 100$

Ans: Let $f\left( x \right) = 99x$

Accordingly,

     $f'\left( 100 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 100+h \right)-f\left( 100 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99\left( {100 + h} \right) - \left( {99 \times 100} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{\left( {99 \times 100} \right) + 99h - \left( {99 \times 100} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{99h}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {99} \right) = 99$

Thus, the derivative of $99x$at $x = 100$is $99$


3. Find the derivative of $x$at $x = 1$

Ans: Let $f\left( x \right) = x$

Accordingly,

     $f'\left( 1 \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( 1+h \right)-f\left( 1 \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 + h} \right) - 1}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{h}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( 1 \right) = 1$

Thus, the derivative of $x$at $x = 1$is $1$


4. Find the derivative of the following functions using the first principle.

(i). ${x^3} - 27$

Ans: Let $f\left( x \right) = {x^3} - 27$

Accordingly, from the first principle,

     $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ {{{\left( {x + h} \right)}^3} - 27} \right] - \left( {{x^3} - 27} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - {x^3}}}{h} = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3{x^2} + 3xh} \right)$

$ \Rightarrow 0 + 3{x^2} + 0 = 3{x^2}$


(ii). $\left( {x - 1} \right)\left( {x - 2} \right)$

Ans: Let $f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h - 1} \right)\left( {x + h - 2} \right) - \left( {x - 1} \right)\left( {x - 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {{x^2} + hx - 2x + hx + {h^2} - 2h - x - h + 2} \right) - \left( {{x^2} - 2x - x + 2} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {hx + hx + {h^2} - 2h - h} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{2hx + {h^2} - 3h}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {2x + h - 3} \right) = 2x - 3$


(iii). $\frac{1}{{{x^2}}}$

Ans: Let $f\left( x \right) = \frac{1}{{{x^2}}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{{{\left( {x + h} \right)}^2}}} - \frac{1}{{{x^2}}}}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {{\left( {x + h} \right)}^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{{x^2} - {x^2} - 2hx - {h^2}}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - {h^2} - 2hx}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - {h^2} - 2x}}{{{x^2}{{\left( {x + h} \right)}^2}}}} \right] = \frac{{0 - 2x}}{{{x^2}{{\left( {x + 0} \right)}^2}}}$

$ \Rightarrow \frac{{ - 2}}{{{x^3}}}$


(iv). $\frac{{x + 1}}{{x - 1}}$

Ans: Let $f\left( x \right) = \frac{{x + 1}}{{x - 1}}$

Accordingly, from the first principle,

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left( {\frac{{x + h + 1}}{{x + h - 1}} - \frac{{x + 1}}{{x - 1}}} \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {x - 1} \right)\left( {x + h + 1} \right) - \left( {x + 1} \right)\left( {x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\left( {{x^2} + hx + x - x - h - 1} \right) - \left( {{x^2} + hx - x + x + h - 1} \right)}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2h}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - 2}}{{\left( {x - 1} \right)\left( {x + h - 1} \right)}}} \right] = \frac{{ - 2}}{{\left( {x - 1} \right)\left( {x - 1} \right)}}$

$ \Rightarrow \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}}$


5. For the function $f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$prove that      $f'\left( 1 \right)=100f'\left( 0 \right)$

Ans: The given function is,

$f\left( x \right) = \frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left[ {\frac{{{x^{100}}}}{{100}} + \frac{{{x^{99}}}}{{99}} + .... + \frac{{{x^2}}}{2} + x + 1} \right]$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {\frac{{{x^{100}}}}{{100}}} \right) + \frac{d}{{dx}}\left( {\frac{{{x^{99}}}}{{99}}} \right) + ... + \frac{d}{{dx}}\left( {\frac{{{x^2}}}{2}} \right) + \frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( 1 \right)$

On using theorem $\frac{d}{{dx}}\left( {n{x^{n - 1}}} \right) = n{x^{n - 1}}$, we obtain

$\frac{d}{{dx}}f\left( x \right) = \frac{{100{x^{99}}}}{{100}} + \frac{{99{x^{98}}}}{{99}} + .... + \frac{{2x}}{2} + 1 + 0$

$\Rightarrow {x^{99}} + {x^{98}} + .... + x + 1$

$\therefore \text{ }f'\left( x \right)={{x}^{99}}+{{x}^{98}}+.....x+1$

At $x = 0,$

$f'\left( 0 \right)=1$

At $x = 1,$

$f'\left( 1 \right)={{1}^{99}}+{{1}^{98}}+....+1+1={{\left[ 1+1+....+1+1 \right]}_{100terms}}$

$\Rightarrow 1 \times 100 = 100$

Thus, $f'\left( 1 \right)=100f'\left( 0 \right)$


6. Find the derivative of ${x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$ , where$a$ is some fixed real number.

Ans: Let$f\left( x \right) = {x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}$

$\frac{d}{{dx}}f\left( x \right) = \frac{d}{{dx}}\left( {{x^n} + a{x^{n - 1}} + {a^2}{x^{n - 2}} + ..... + {a^{n - 1}}x + {a^n}} \right)$

$\Rightarrow \frac{{d\left( {{x^n}} \right)}}{{dx}} + a\frac{{d\left( {{x^{n - 1}}} \right)}}{{dx}} + {a^2}\frac{{d\left( {{x^{n - 2}}} \right)}}{{dx}} + .... + {a^{n - 1}}\frac{{d\left( x \right)}}{{dx}} + {a^n}\frac{{d\left( 1 \right)}}{{dx}}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$

So, we obtain

\[f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+....+{{a}^{n-1}}+{{a}^{n}}\left( 0 \right)\]

$\therefore \text{ }f'\left( x \right)=n{{x}^{n-1}}+a\left( n-1 \right){{x}^{n-2}}+{{a}^{2}}\left( n-2 \right){{x}^{n-3}}+...+{{a}^{n-1}}$


7. For some constants $a$and $b$, find the derivative of the following functions.

(a). $\left( {x - a} \right)\left( {x - b} \right)$

Ans: Let $f\left( x \right) = \left( {x - a} \right)\left( {x - b} \right)$

$\Rightarrow f\left( x \right) = {x^2} - \left( {a - b} \right)x + ab$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{x}^{2}}-\left( a+b \right)x+ab \right)$

$\Rightarrow \frac{d}{{dx}}\left( {{x^2}} \right) - \left( {a + b} \right)\frac{d}{{dx}}\left( x \right) + \frac{d}{{dx}}\left( {ab} \right)$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)=2x-\left( a+b \right)+0=2x-a-b$


(b). ${\left( {a{x^2} + b} \right)^2}$

Ans: Let, $f\left( x \right) = {\left( {a{x^2} + b} \right)^2}$

$\Rightarrow f\left( x \right) = {a^2}{x^4} + 2ab{x^2} + {b^2}$

$\therefore \text{ }f'\left( x \right)=\frac{d}{dx}\left( {{a}^{2}}{{x}^{4}}+2ab{{x}^{2}}+{{b}^{2}} \right)$

$\Rightarrow {a^2}\frac{d}{{dx}}\left( {{x^4}} \right) + 2ab\frac{d}{{dx}}\left( {{x^2}} \right) + \frac{d}{{dx}}{b^2}$

On using theorem $\frac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$, we obtain

$f'\left( x \right)={{a}^{2}}\left( 4{{x}^{3}} \right)+2ab\left( 2x \right)+{{b}^{2}}\left( 0 \right)$

$\Rightarrow 4{a^2}{x^3} + 4abx = 4ax\left( {a{x^2} + b} \right)$


(c). $\frac{{x - a}}{{x - b}}$

Ans: Let, $f\left( x \right) = \frac{{x - a}}{{x - b}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{x-a}{x-b} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-b \right)\frac{d}{dx}\left( x-a \right)-\left( x-a \right)\frac{d}{dx}\left( x-b \right)}{{{\left( x-b \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - b} \right) \times 1 - \left( {x - a} \right) \times 1}}{{{{\left( {x - b} \right)}^2}}}$

$\Rightarrow \frac{{x - b - x + a}}{{{{\left( {x - b} \right)}^2}}} = \frac{{a - b}}{{{{\left( {x - b} \right)}^2}}}$


8. Find the derivative of $\frac{{{x^n} - {a^n}}}{{x - a}}$for any constant $a$

Ans: Let $f\left( x \right) = \frac{{{x^n} - {a^n}}}{{x - a}}$

$\Rightarrow \text{ }f'\left( x \right)=\frac{d}{dx}\left( \frac{{{x}^{n}}-{{a}^{n}}}{x-a} \right)$

By quotient rule,

$f'\left( x \right)=\frac{\left( x-a \right)\frac{d}{dx}\left( {{x}^{n}}-{{a}^{n}} \right)-\left( {{x}^{n}}-{{a}^{n}} \right)\frac{d}{dx}\left( x-a \right)}{{{\left( x-a \right)}^{2}}}$

$\Rightarrow \frac{{\left( {x - a} \right)\left( {n{x^{n - 1}} - 0} \right) - \left( {{x^n} - {a^n}} \right)}}{{{{\left( {x - a} \right)}^2}}}$

$\Rightarrow \frac{{n{x^n} - an{x^{n - 1}} - {x^n} + {a^n}}}{{{{\left( {x - a} \right)}^2}}}$


9. Find the derivative of the following functions

(a). $2x - \frac{3}{4}$

Ans: Let $f\left( x \right) = 2x - \frac{3}{4}$

$f'\left( x \right)=\frac{d}{dx}\left( 2x-\frac{3}{4} \right)$

$\Rightarrow 2\frac{d}{{dx}}\left( x \right) - \frac{d}{{dx}}\left( {\frac{3}{4}} \right)$

$\Rightarrow 2 - 0 = 2$


(b). $\left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

Ans: Let $f\left( x \right) = \left( {5{x^3} + 3x - 1} \right)\left( {x - 1} \right)$

By Leibnitz product rule,

\[f'\left( x \right)=\left( 5{{x}^{3}}+3x-1 \right)\frac{d}{dx}\left( x-1 \right)+\left( x-1 \right)\frac{d}{dx}\left( 5{{x}^{3}}+3x-1 \right)\]

$\Rightarrow \left( {\left( {5{x^3} + 3x - 1} \right) \times 1} \right) + \left( {x - 1} \right)\left( {5 \times 3{x^2} + 3 - 0} \right)$

$\Rightarrow \left( {5{x^3} + 3x - 1} \right) + \left( {x - 1} \right)\left( {15{x^2} + 3} \right)$

$\Rightarrow 5{x^3} + 3x - 1 + 15{x^3} + 3x - 15{x^2} - 3$

$\Rightarrow 20{x^3} - 15{x^2} + 6x - 4$


(c). ${x^{ - 3}}\left( {5 + 3x} \right)$

Ans: Let, $f\left( x \right) = {x^{ - 3}}\left( {5 + 3x} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 3}}\frac{d}{{dx}}\left( {5 + 3x} \right) + \left( {5 + 3x} \right)\frac{d}{{dx}}\left( {{x^{ - 3}}} \right)$

$\Rightarrow {x^{ - 3}}\left( {0 + 3} \right) + \left( {5 + 3x} \right)\left( {3{x^{ - 3 - 1}}} \right)$

$\Rightarrow 3{x^{ - 3}} + \left( {5 + 3x} \right)\left( { - 3{x^{ - 4}}} \right) = 3{x^{ - 3}} - 15{x^{ - 4}} - 9{x^{ - 3}}$

$\Rightarrow  - 6{x^{ - 3}} - 15{x^{ - 4}} =  - 3{x^{ - 3}}\left( {2 + \frac{5}{x}} \right) = \frac{{ - 3{x^{ - 3}}}}{x}\left( {2x + 5} \right)$

$\Rightarrow \frac{{ - 3}}{{{x^4}}}\left( {5 + 2x} \right)$


(d). ${x^5}\left( {3 - 6{x^{ - 9}}} \right)$

Ans: Let, $f\left( x \right) = {x^5}\left( {3 - 6{x^{ - 9}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^5}\frac{d}{{dx}}\left( {3 - 6{x^{ - 9}}} \right) + \left( {3 - 6{x^{ - 9}}} \right)\frac{d}{{dx}}{x^5}$

$\Rightarrow {x^5}\left\{ {0 - 6\left( { - 9} \right){x^{ - 9 - 1}}} \right\} + \left( {3 - 6{x^{ - 9}}} \right)\left( {5{x^4}} \right)$

$\Rightarrow {x^5}\left( {54{x^{ - 10}}} \right) + 15{x^4} - 30{x^{ - 5}} = 54{x^{ - 5}} + 15{x^4} - 30{x^{ - 5}}$

$\Rightarrow 24{x^{ - 5}} + 15{x^4} = 15{x^4} + \frac{{24}}{{{x^5}}}$


(e). ${x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

Ans: Let $f\left( x \right) = {x^{ - 4}}\left( {3 - 4{x^{ - 5}}} \right)$

By Leibnitz product rule,

$f'\left( x \right) = {x^{ - 4}}\frac{d}{{dx}}\left( {3 - 4{x^{ - 5}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\frac{d}{{dx}}\left( {{x^{ - 4}}} \right)$

$\Rightarrow {x^{ - 4}}\left\{ {0 - 4\left( { - 5} \right){x^{ - 5 - 1}}} \right\} + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4} \right){x^{ - 4 - 1}}$

$\Rightarrow {x^{ - 4}}\left( {20{x^{ - 6}}} \right) + \left( {3 - 4{x^{ - 5}}} \right)\left( { - 4{x^{ - 5}}} \right)$

$\Rightarrow 20{x^{ - 10}} - 12{x^{ - 5}} + 16{x^{ - 10}} = 36{x^{ - 10}} - 12{x^{ - 5}}$

$\Rightarrow \frac{{36}}{{{x^{10}}}} - \frac{{12}}{{{x^5}}}$


(f). $\frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

Ans: $f\left( x \right) = \frac{2}{{x + 1}} - \frac{{{x^2}}}{{3x - 1}}$

$f'\left( x \right) = \frac{d}{{dx}}\left( {\frac{2}{{x + 1}}} \right) - \frac{d}{{dx}}\left( {\frac{{{x^2}}}{{3x - 1}}} \right)$

By quotient rule,

$f'\left( x \right) = \left[ {\frac{{\left( {x + 1} \right)\frac{d}{{dx}}\left( 2 \right) - 2\frac{d}{{dx}}\left( {x + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\frac{d}{{dx}}\left( {{x^2}} \right) - {x^2}\frac{d}{{dx}}\left( {3x - 1} \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \left[ {\frac{{\left( {x + 1} \right)\left( 0 \right) - 2\left( 0 \right)}}{{{{\left( {x + 1} \right)}^2}}}} \right] - \left[ {\frac{{\left( {3x - 1} \right)\left( {2x} \right) - {x^2}\left( 3 \right)}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{6{x^2} - 2x - 3{x^2}}}{{{{\left( {3x - 1} \right)}^2}}}} \right] = \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \left[ {\frac{{3{x^2} - 2x}}{{{{\left( {3x - 1} \right)}^2}}}} \right]$

$\Rightarrow \frac{{ - 2}}{{{{\left( {x + 1} \right)}^2}}} - \frac{{x\left( {3x - 2} \right)}}{{{{\left( {3x - 1} \right)}^2}}}$


10. Find the derivative of $\cos x$from the first principle

Ans: Let $f\left( x \right) = \cos x$

Accordingly from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos \left( {x + h} \right) - \cos \left( x \right)}}{h}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right] = \mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$\Rightarrow  - \cos x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{1 - \cosh }}{h}} \right)} \right] - \sin x\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)} \right]$

We know, $\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h} = 0$ and $\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h} = 1$

$\Rightarrow f'\left( x \right) =  - \cos x \times 0 - \sin x \times 1$

$\therefore f'\left( x \right) =  - \sin x$


11. Find the derivative of the functions below:

(i). $\sin x\cos x$

Ans: Let $f\left( x \right) = \sin x\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {x + h} \right)\cos \left( {x + h} \right) - \sin x\cos x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\sin \left( {x + h} \right)\cos \left( {x + h} \right) - 2\sin x\cos x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\sin 2\left( {x + h} \right) - \sin 2x} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{2x + 2h + 2x}}{2}.\sin \frac{{2x + 2h - 2x}}{2}} \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {2\cos \frac{{4x + 2h}}{2}.\sin \frac{{2h}}{2}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\left[ {\cos \left( {2x + h} \right)\sinh } \right]$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \cos \left( {2x + h} \right).\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}$

$\Rightarrow \cos \left( {2x + h} \right) \times 1 = \cos 2x$


(ii). $\sec x$

Ans: Let $f\left( x \right) = \sec x$

Accordingly, from the first principle

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\sec \left( {x + h} \right) - \sec x}}{h}$

$\Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right]$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{{2h}}\frac{{\left[ { - 2\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}$

$\Rightarrow \frac{1}{{\cos x}} \times 1 \times \frac{{\sin x}}{{\cos x}} = \sec x\tan x$


(iii). $5\sec x + 4\cos x$

Ans: Let, 

$f\left( x \right) = 5\sec x + 4\cos x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \frac{{\lim }}{{h \to 0}}\frac{{5\sec \left( {x + h} \right) + 4\cos \left( {x + h} \right) - \left[ {5\sec x + 4\cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sec \left( {x + h} \right) - \sec x} \right]}}{h} + 4\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\cos \left( {x + h} \right) - \cos x} \right]}}{h}$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos \left( {x + h} \right)}} - \frac{1}{{\cos x}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] + 4\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos x\cosh  - \sin x\sinh  - \cos x} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] + 4\left[ { - \cos x\mathop {\lim }\limits_{h \to 0} \frac{{\left( {1 - \cos x} \right)}}{h} - \sin x\mathop {\lim \frac{{\sinh }}{h}}\limits_{h \to 0} } \right]$

$ \Rightarrow \frac{5}{{\cos x}}\mathop {\lim }\limits_{h \to 0} \frac{{\left[ {\sin \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\cos \left( {x + h} \right)}} + 4\left[ { - \cos x\left( 0 \right) - \sin x\left( 1 \right)} \right]$

$ \Rightarrow \frac{5}{{\cos x}}\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos \left( {x + h} \right)}}} \right] - 4\sin x$

$ \Rightarrow \frac{5}{{\cos x}} \times \frac{{\sin x}}{{\cos x}} \times 1 - 4\sin x = 5\sec x\tan x - 4\sin x$


(iv). $\cos ecx$

Ans: Let $f\left( x \right) = \cos ecx$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{\left[ { - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right]}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{\frac{h}{2} \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}$

$ \Rightarrow \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right) \times 1 =  - \cos ecx\cot x$


(v). $3\cot x + 5\cos ecx$

Ans: Let $f\left( x \right) = 3\cot x + 5\cos ecx$

Accordingly, from the first principle

 $f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {3\cot \left( {x + h} \right) + 5\cos ec\left( {x + h} \right) - 3\cot x - 5\cos ecx} \right]$

\[ \Rightarrow 3\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] + 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right]\,\,\,\,\,\,\,\,\,\,....\left( 1 \right)\]

Now, $\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cot \left( {x + h} \right) - \cot x} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)}}{{\sin \left( {x + h} \right)}} - \frac{{\cos x}}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos \left( {x + h} \right)\sin x - \cos x\sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x - x - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( { - h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}.\mathop {\lim }\limits_{h \to 0} \left[ {\frac{1}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow  - 1 \times \frac{1}{{\sin x\sin \left( {x + h} \right)}} = \frac{{ - 1}}{{{{\sin }^2}x}} =  - \cos e{c^2}x\,\,\,\,\,\,......(2)$

$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos ec\left( {x + h} \right) - \cos ecx} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\sin \left( {x + h} \right)}} - \frac{1}{{\sin x}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x - \sin \left( {x + h} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right]$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{2\cos \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right] = \mathop {\lim }\limits_{h \to 0} \frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{{ - h}}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}}}{{\sin x\sin \left( {x + h} \right)}}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - \cos \left( {\frac{{2x + h}}{2}} \right)}}{{\sin x\sin \left( {x + h} \right)}}} \right)\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}} = \left( {\frac{{ - \cos x}}{{\sin x\sin x}}} \right).1$

$ \Rightarrow  - \cos ecx\cot x\,\,\,\,\,\,......(3)$

From (1), (2), and (3), we obtain

$f'\left( x \right) =  - 3\cos e{c^2}x - 5\cos ecx\cot x$


(vi). $5\sin x - 6\cos x + 7$

Ans: Let $f\left( x \right) = 5\sin x - 6\cos x + 7$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {5\sin \left( {x + h} \right) - 6\cos \left( {x + h} \right) + 7 - 5\sin x + 6\cos x - 7} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sin \left( {x + h} \right) - \sin x} \right] - 6\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {x + h} \right) - \cos x} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{x + h + x}}{2}} \right).\sin \left( {\frac{{x + h - x}}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{\cos x\cosh  - \sin x\sinh  - \cos x}}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\cos \left( {\frac{{2x + h}}{2}} \right).\sin \left( {\frac{h}{2}} \right)} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right) - \sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\cos \left( {\frac{{2x + h}}{2}} \right)\frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\mathop {\lim }\limits_{h \to 0} \left[ {\frac{{ - \cos x\left( {1 - \cosh } \right)}}{h} - \frac{{\sin x\sinh }}{h}} \right]$

$ \Rightarrow 5\left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\frac{{2x + h}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\left( {\frac{h}{2}} \right)}}} \right] - 6\left[ { - \cos x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{1 - \cosh }}{h}} \right) - \sin x\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)} \right]$

$ \Rightarrow 5\cos x.1 - 6\left[ {\left( { - \cos x} \right).\left( 0 \right) - \sin x.1} \right]$

$ \Rightarrow 5\cos x + 6\sin x$


(vii). $2\tan x - 7\sec x$

Ans: Let $f\left( x \right) = 2\tan x - 7\sec x$

Accordingly, from the first principle,

$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$

$ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {2\tan \left( {x + h} \right) - 7\sec \left( {x + h} \right) - 2\tan x + 7\sec x}\right]$

  $ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\tan \left( {x + h} \right) - \tan x} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\sec \left( {x + h} \right) - \sec x} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \frac{{\sin x}}{{\cos x}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{1}{{\cos ec\left( {x + h} \right)}} - \frac{1}{{\cos ecx}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x\sin \left( {x + h} \right) - \sin x\cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{\sin x + h - x}}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{x + x + h}}{2}} \right)\sin \left( {\frac{{x - x - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left[ {\mathop {\lim }\limits_{h \to 0} \left( {\frac{{\sinh }}{h}} \right)\frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left[ {\frac{{ - 2\sin \left( {\frac{{2x + h}}{2}} \right)\sin \left( {\frac{{ - h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right]$

$ \Rightarrow 2\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sinh }}{h}} \right)\left[ {\mathop {\lim }\limits_{h \to 0} \frac{1}{{\cos x\cos \left( {x + h} \right)}}} \right] - 7\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{h}{2}} \right)}}{{\frac{h}{2}}}} \right)\left( {\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {\frac{{2x + h}}{2}} \right)}}{{\cos x\cos \left( {x + h} \right)}}} \right)$

$ \Rightarrow 2 \times 1 \times 1 \times \frac{1}{{\cos x\cos x}} - 7\left( {1 \times \frac{{\sin x}}{{\cos x\cos x}}} \right) = 2{\sec ^2}x - 7\sec x\tan x$


NCERT Solutions for Class 11 Maths Chapters

 

NCERT Solution Class 11 Maths of Chapter 13 All Exercises

Chapter 13 - Limits and Derivatives Exercises in PDF Format

Exercise 13.1

32 Questions & Solutions

Exercise 13.2

11 Questions & Solutions

Miscellaneous Exercise

30 Questions & Solutions


All Topics and Important Formulae Under NCERT Class 11 Maths for Exercise 13.2

The topics and related formulae covered under exercise 13.2 Maths Class 11 NCERT are given below.

Section 13.5: Derivatives

  1. If f is the real-valued function and x is the point exist in the domain of f then derivative of f i.e. f’ can be find as:

$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\frac{f\left( x+h \right)-f\left( x \right)}{h}$

Section 13.5.1: Derivatives of Functions Algebra

  1. \[\frac{d}{dx}\](f(x) + g(x)) = \[\frac{d}{dx}\]f(x) + \[\frac{d}{dx}\]g(x)

  2. \[\frac{d}{dx}\](f(x) - g(x)) = \[\frac{d}{dx}\]f(x) - \[\frac{d}{dx}\]g(x)

  3. \[\frac{d}{dx}\](f(x) . g(x)) = \[\frac{d}{dx}\]f(x).g(x) - f(x).\[\frac{d}{dx}\]g(x)

  4. \[\frac{d}{dx}(\frac{f(x)}{g(x)})\] = (\[\frac{ \frac{d}{dx}f(x).g(x) - f(x).\frac{d}{dx}g(x)}{g(x)^2} \])

Section 13.5.2: To find the derivatives of polynomials and trigonometric functions

  1. If the polynomial function f(x) is given as  

f (x) = anxn + an-1xn-1 +  an-2xn-2  + an-3xn-3 …… +  a2x2 + a1x1 + a0x0  

Then the derivative of the function f (x) w.r.t. X is  given as

f’ (x) = nan-1xn-1 + (n - 1) an-2xn-2  + an-3xn-3 …… +  2a2x + a1

  1. Derivatives of some trigonometric functions are given as

  • \[\frac{d}{dx}\](sin x) = cos x

  • \[\frac{d}{dx}\](cos x) = – sin x

  • \[\frac{d}{dx}\](tan x) = sec2 x

  • \[\frac{d}{dx}\](cot x) = – cosec2 x

  • \[\frac{d}{dx}\](sec x) = tan x . sec x

  • \[\frac{d}{dx}\](cosec x) = – cot x . cosec x


NCERT Solutions for Class 11 Maths Chapter 13 Limits and Derivatives Exercise 13.2

Opting for the NCERT solutions for Ex 13.2 Class 11 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 13.2 Class 11 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 11 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 11 Maths Chapter 13 Exercise 13.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 11 Maths Chapter 13 Exercise 13.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it. 

Do not delay any more. Download the NCERT solutions for Class 11 Maths Chapter 13 Exercise 13.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.

FAQs on NCERT Solutions for Class 11 Maths Chapter 13: Limits and Derivatives - Exercise 13.2

1. What does the Class 11 Maths Chapter 13 Exercise 13.2 deal with?

The Exercise 13.2 of Class 11 Maths Chapter 13 NCERT book deals with these topics on Derivatives :

  • Algebra of derivative of functions.

  • Derivative of polynomials and trigonometric functions.

2. Does Vedantu provide solutions to Class 11 Maths Chapter 13 Exercise 13.2 of NCERT textbook?

Yes, Vedantu, a leading ed-tech portal in India, provides solutions to Class 11 Maths Chapter 13 Exercise 13.2. These solutions are easily available for download on our website and mobile application for download. Students who solve the exercises and refer to NCERT Solutions gain the right amount of exposure and acquire good marks.


Not only Exercises 13.2, but also the subject matter experts at Vedantu provide solutions for all the exercises included in Chapter 13 of Class 11 Maths which are available on the website.

3. What are the advantages of using Vedantu’s Class 11 Maths Chapter 13 Exercise 13.2?

NCERT Solutions for Class 11 Maths Chapter 13 Ex 13.2 Limits and Derivatives are designed in a systematic manner. The solutions provided in a PDF format contain clarification for each concept and problem from the chapter. These NCERT Solutions are written by highly experienced educators or teachers from the relevant industry. They have written solutions to all the questions from Ex 13.2 in a comprehensive manner and lucid language. The solutions are set up in such a manner that a student can learn the marks weightage per question and identify where they need to allocate their time and energy.


These NCERT Solutions offered by Vedantu come handy for a Class 11 student so that they can hold command over the chapters and the subject very easily. So, there is nothing to worry about, all the quality study resources are available on your fingertips. Just click and download the solutions PDF and score the best possible marks in the exams.

4. How can I download the solutions to Class 11 Maths Chapter 13 Exercise 13.2 offered by Vedantu?

Downloading the solutions of Class 11 Maths Chapter 13 Exercise 13.2 offered by Vedantu is extremely easy and absolutely hassle-free. All you have to do is visit Vedantu’s official website (vedantu.com) or download the Vedantu app and then sign in to access your preferred study materials. Class 11 Maths Chapter 13 Exercise 13.2 solutions along with the other study materials have been provided in PDF format. Created by the experienced experts, these study materials can be downloaded or accessed from the Vedantu app or website any time as per the students’ convenience.

5. Where can I find NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths online?

Students face difficulty in finding NCERT solutions on the internet. To make it easier, Students can find the NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths on Vedantu easily.  Stepwise solutions have been provided for all the questions present in the exercise. The solutions are available in PDF format which the students can access either online or download for free. All the solutions are created by our expert teachers as per the CBSE guidelines.  These solutions are available at free of cost on Vedantu(vedantu.com) and mobile app.

6. Are NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths helpful in the exam preparation?

Yes. The NCERT Solutions will definitely help the students in their exam preparation as it will help them to improve their foundation in topics. These solutions will help the students to speed up their exam preparation and save time. Students can refer to these to check if their answers and steps are right or wrong. All the solutions are accurate and are explained in a detailed way helping the students to score high marks. They are framed by the subject experts of Vedantu. It will help in boosting the confidence level among students and increase the efficiency to solve difficult problems in a shorter duration.

7. Do NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths help you to score well in the exam?

First, students should solve all the easy problems and then solve the complex problems. After completing the exercise, students will be able to know the areas in which they are facing difficulty and lagging behind. Students will be able to perform well in the exams by practising the problems numerous times. Our experts also provide shortcut tips to help the students to solve complex problems in easier methods. Regular practice will also increase the speed and accuracy of the students.

8. Why should I download Vedantu NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths?

The reasons why students should download the NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths are that it is first of all framed by the experts of Vedantu. Apart from that, the CBSE board itself recommends the students refer to the NCERT textbooks which is one of the best study materials from the exam perspective. So, that is why NCERT Solutions plays a vital role as the answers to all the questions from the exercise are available in one place. The subject matter experts have provided answers in a detailed manner helping the students to score well in the exams.

9. Are NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths the best study material for the students during revision?

Yes, Vedantu NCERT Solutions for Exercise 13.2 of Chapter 13 of Class 11 Maths are the top most reliable study resources for the students. It helps the students to learn and revise complex concepts easily. Every solution is provided by an explanation to make learning easier for the students. The experts have designed the stepwise solutions to encourage the analytical thinking approach among the students. During exam time, it will help them to save a lot of time by giving a quick revision of all the methods and formulas.