Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 4 - Principle Of Mathematical Induction

ffImage
Last updated date: 27th Apr 2024
Total views: 783.3k
Views today: 23.83k
MVSAT offline centres Dec 2023

Class 11 Maths Chapter 4 - NCERT Solutions

NCERT Solutions for Class 11 Maths Chapter 4 are prepared by the extremely talented subject-matter experts at Vedantu. All the sums that are given in the exercises of this NCERT Class 11 Chapter 4 Principle of Mathematical Induction are solved in a step-by-step method in these solutions. Our subject-matter experts have formulated these NCERT Solutions by following the CBSE guidelines to help you practice for exams and pass with flying colors. These solutions are available in PDF format on Vedantu and can be downloaded for free.  


Class:

NCERT Solutions for Class 11

Subject:

Class 11 Maths

Chapter Name:

Chapter 4 - Principle of Mathematical Induction

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes



About Chapter - 4 Principle of Mathematical Induction in Class 11 Maths 

Chapter - 4 Principle of Mathematical Induction is a technique to derive proofs of certain mathematical theorems, expressions or formulas in algebra or other applications of Mathematics, such as inductive and deductive reasoning. Therefore, the principle of mathematical induction is a tool that is used to prove different kinds of mathematical statements. Also, Chapter 4 of Class 11 Maths helps develop logical reasoning in students.

 

In NCERT Class 11 Maths Chapter 4, students learn the concept of inductive and deductive reasoning. The process to solve questions of Chapter - 4 Principle of Mathematical Induction begins by assuming a statement as P(n), where ‘n’ is positive for which the correctness for n = 1 is checked. Then another statement P(k) for some positive integer ‘k’ is examined and in the end, assuming the truth of P (k+1) is established.

 

In the NCERT Solutions Class 11 Maths Chapter 4 Principle of Mathematical Induction, questions from all the concepts of induction, including various properties of mathematical induction which form the basis of theoretical maths are provided. 

 

Class 11 Maths Chapter - 4 Principle of Mathematical Induction 2024-25 Weightage

The Principle of Mathematical Induction, Chapter 4 of NCERT Class 11 Maths is a part of unit II - Algebra. This unit comprises the maximum weightage of the CBSE 11th Maths syllabus as it consists of a total of 6 chapters, which make up a total of 30 marks in both terms. Chapter 4, Principle of Mathematical Induction, and its simple applications are also included in the Class 11 IIT JEE syllabus.



Principle of Mathematical Induction Chapter at a Glance - Class 11 NCERT Solutions

  • One key basis for mathematical thinking is deductive reasoning In contract to deduction, inductive reasoning depends on working with different cases and developing a connective by observing incidences till we have observed each and every case Thus, in simple language we can say the word 'induction' means the generalisation from particular cases or facts.

  • The principle of mathematical induction is one such tool which can be used to prove a wide variety of mathematical statements. Each such statements is assumed as $P(n)$ associated integer $n$, for which the correctness for the case $n=1$ is examined Then assuming the truth of $P(k)$ for some positive integer $k$, the truth of $P(k+1)$ is established.

Competitive Exams after 12th Science

Exercises under NCERT Solutions for Class 11 Maths Chapter 4 – Principle of Mathematical Induction

Exercise 4.1: This exercise consists of 12 questions, which are all based on proving statements using the principle of mathematical induction. These questions are designed to help students understand how to apply the principle of mathematical induction to prove various statements.


The questions in this exercise require students to prove various statements, such as:

  • The sum of the first n odd natural numbers is n^2.

  • The sum of the cubes of the first n natural numbers is [(n(n+1))/2]^2.

  • The sum of the squares of the first n natural numbers is [n(n+1)(2n+1)]/6.

  • In each question, students are required to first prove the statement for the base case (n = 1) and then assume the statement to be true for an arbitrary value of n (known as the induction hypothesis) before proving that the statement holds true for n+1.


The solutions to all the questions in Exercise 4.1 are provided in the NCERT Solutions for Class 11 Maths Chapter 4, which can help students check their answers and understand the concepts better.


Access NCERT Solutions for Class 11 Maths Chapter 4 – Principle of Mathematical Induction

1. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1+3+}{{\text{3}}^{\text{2}}}\text{+}.....\text{+}{{\text{3}}^{\text{n-1}}}\text{=}\dfrac{\left( {{\text{3}}^{\text{n}}}\text{-1} \right)}{\text{2}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1+3+}{{\text{3}}^{\text{2}}}\text{+}.....\text{+}{{\text{3}}^{\text{n-1}}}\text{=}\dfrac{\left( {{\text{3}}^{\text{n}}}\text{-1} \right)}{\text{2}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.}={{\text{3}}^{1-1}}\text{=1}\]

$\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\left( {{\text{3}}^{\text{1}}}\text{-1} \right)}{\text{2}}\text{=}\dfrac{\text{3-1}}{\text{2}}\text{=}\dfrac{\text{2}}{\text{2}}\text{=1}$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1+3+}{{\text{3}}^{\text{2}}}\text{+}.....\text{+}{{\text{3}}^{\text{k-1}}}\text{=}\dfrac{\left( {{\text{3}}^{\text{k}}}\text{-1} \right)}{\text{2}}\,\,.....\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1+3+}{{\text{3}}^{\text{2}}}\text{+}.....\text{+}{{\text{3}}^{\text{k-1}}}\text{+}{{\text{3}}^{\left( \text{k+1} \right)\text{-1}}}$ 

$\text{=}\left( \text{1+3+}{{\text{3}}^{\text{2}}}\text{+}....\text{+}{{\text{3}}^{\text{k-1}}} \right)\text{+}{{\text{3}}^{\text{k}}}$ 

$\text{=}\dfrac{\left( {{\text{3}}^{\text{k}}}\text{-1} \right)}{\text{2}}\text{+}{{\text{3}}^{\text{k}}}$          [Using (i)]

$\text{=}\dfrac{\left( {{\text{3}}^{\text{k}}}\text{-1} \right)\text{+2}\text{.}{{\text{3}}^{\text{k}}}}{\text{2}}$ 

$=\dfrac{\left( 1+2 \right){{3}^{k}}-1}{2}$ 

$=\dfrac{{{3.3}^{k}}-1}{2}$ 

$=\dfrac{{{3}^{k+1}}-1}{2}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

2. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N:}$ 

${{\text{1}}^{\text{3}}}\text{+}{{\text{2}}^{\text{3}}}\text{+}{{\text{3}}^{\text{3}}}\text{+}.....\text{+}{{\text{n}}^{\text{3}}}\text{=}{{\left( \dfrac{\text{n}\left( \text{n+1} \right)}{\text{2}} \right)}^{\text{2}}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

\[\text{P}\left( \text{1} \right)\text{:}{{\text{1}}^{\text{3}}}\text{+}{{\text{2}}^{\text{3}}}\text{+}{{\text{3}}^{\text{3}}}\text{+}.....\text{+}{{\text{n}}^{\text{3}}}\text{=}{{\left( \dfrac{\text{n}\left( \text{n+1} \right)}{\text{2}} \right)}^{\text{2}}}\] 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.}={{1}^{3}}\text{=1}\]

$\text{R}\text{.H}\text{.S}\text{.=}{{\left( \dfrac{1\left( \text{1+1} \right)}{\text{2}} \right)}^{\text{2}}}={{\left( 1 \right)}^{\text{2}}}=1$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

\[{{\text{1}}^{\text{3}}}\text{+}{{\text{2}}^{\text{3}}}\text{+}{{\text{3}}^{\text{3}}}\text{+}.....\text{+}{{\text{k}}^{\text{3}}}\text{=}{{\left( \dfrac{\text{k}\left( \text{k+1} \right)}{\text{2}} \right)}^{\text{2}}}\,\,.....\text{(i)}\] 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

\[{{\text{1}}^{\text{3}}}\text{+}{{\text{2}}^{\text{3}}}\text{+}{{\text{3}}^{\text{3}}}\text{+}.....\text{+}{{\text{k}}^{\text{3}}}\text{+}{{\left( \text{k+1} \right)}^{\text{3}}}\] 

$\text{=}\left( {{\text{1}}^{\text{3}}}\text{+}{{\text{2}}^{\text{3}}}\text{+}{{\text{3}}^{\text{3}}}\text{+}.....\text{+}{{\text{k}}^{\text{3}}} \right)\text{+}{{\left( \text{k+1} \right)}^{\text{3}}}$ 

$\text{=}{{\left( \dfrac{\text{k}\left( \text{k+1} \right)}{\text{2}} \right)}^{\text{2}}}\text{+}{{\left( \text{k+1} \right)}^{\text{3}}}$              [Using (i)]

$\text{=}\dfrac{{{\text{k}}^{\text{2}}}{{\left( \text{k+1} \right)}^{\text{2}}}}{\text{4}}\text{+}{{\left( \text{k+1} \right)}^{\text{3}}}$ 

$\text{=}\dfrac{{{\text{k}}^{\text{2}}}{{\left( \text{k+1} \right)}^{\text{2}}}\text{+4}{{\left( \text{k+1} \right)}^{\text{3}}}}{\text{4}}$ 

$\text{=}\dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}\left\{ {{\text{k}}^{\text{2}}}\text{+4}\left( \text{k+1} \right) \right\}}{\text{4}}$ 

$\text{=}\dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}\left\{ {{\text{k}}^{\text{2}}}\text{+4k+4} \right\}}{\text{4}}$ 

$\text{=}\dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}{{\left( \text{k+2} \right)}^{\text{2}}}}{\text{4}}$ 

$\text{=}\dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}{{\left( \text{k+1+1} \right)}^{\text{2}}}}{\text{4}}$ 

$\text{=}{{\left( \dfrac{\left( \text{k+1} \right)\left( \text{k+1+1} \right)}{\text{2}} \right)}^{\text{2}}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

3. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$ :

$\text{1+}\dfrac{\text{1}}{\left( \text{1+2} \right)}\text{+}\dfrac{\text{1}}{\left( \text{1+2+3} \right)}\text{+}.....\text{+}\dfrac{\text{1}}{\left( \text{1+2+3+}...\text{n} \right)}\text{=}\dfrac{\text{2n}}{\left( \text{n+1} \right)}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1+}\dfrac{\text{1}}{\text{1+2}}\text{+}\dfrac{\text{1}}{\text{1+2+3}}\text{+}.....\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{n}}\text{=}\dfrac{\text{2n}}{\text{n+1}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{1}{1}=1\]

$\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{2}\cdot \text{1}}{\text{1+1}}=1$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1+}\dfrac{\text{1}}{\left( \text{1+2} \right)}\text{+}\dfrac{\text{1}}{\left( \text{1+2+3} \right)}\text{+}.....\text{+}\dfrac{\text{1}}{\left( \text{1+2+3+}...\text{+k} \right)}\text{=}\dfrac{\text{2k}}{\left( \text{k+1} \right)}......(i)$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1+}\dfrac{\text{1}}{\text{1+2}}\text{+}\dfrac{\text{1}}{\text{1+2+3}}\text{+}....\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{+k}}\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{+k+}\left( \text{k+1} \right)}$ 

$\text{=}\left( \text{1+}\dfrac{\text{1}}{\text{1+2}}\text{+}\dfrac{\text{1}}{\text{1+2+3}}\text{+}...\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{+k}} \right)\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{+k+}\left( \text{k+1} \right)}$ 

$\text{=}\dfrac{\text{2k}}{\text{k+1}}\text{+}\dfrac{\text{1}}{\text{1+2+3+}...\text{+k+}\left( \text{k+1} \right)}$            [Using (i)]

$\text{=}\dfrac{\text{2k}}{\text{k+1}}\text{+}\dfrac{\text{1}}{\left( \dfrac{\left( \text{k+1} \right)\left( \text{k+1+1} \right)}{\text{2}} \right)}$            $\left[ \text{1+2+3}...\text{+n=}\dfrac{\text{n}\left( \text{n+1} \right)}{\text{2}} \right]$ 

$\text{=}\dfrac{\text{2k}}{\text{k+1}}\text{+}\dfrac{\text{2}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}$ 

$\text{=}\dfrac{\text{2}}{\left( \text{k+1} \right)}\left( \text{k+}\dfrac{\text{1}}{\text{k+2}} \right)$ 

$\text{=}\dfrac{\text{2}}{\left( \text{k+1} \right)}\left( \dfrac{{{\text{k}}^{\text{2}}}\text{+2k+1}}{\text{k+2}} \right)$ 

$\text{=}\dfrac{\text{2}}{\left( \text{k+1} \right)}\left[ \dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}}{\text{k+2}} \right]$ 

$\text{=}\dfrac{\text{2}\left( \text{k+1} \right)}{\left( \text{k+2} \right)}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

4. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1}\text{.2}\text{.3+2}\text{.3}\text{.4+}...\text{+n}\left( \text{n+1} \right)\left( \text{n+2} \right)\text{=}\dfrac{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)\left( \text{n+3} \right)}{\text{4}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1}\text{.2}\text{.3+2}\text{.3}\text{.4+}...\text{+n}\left( \text{n+1} \right)\left( \text{n+2} \right)\text{=}\dfrac{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)\left( \text{n+3} \right)}{\text{4}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=1}\text{.2}\text{.3=6}\]

$\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}\left( \text{1+1} \right)\left( \text{1+2} \right)\left( \text{1+3} \right)}{\text{4}}\text{=}\dfrac{\text{1}\text{.2}\text{.3}\text{.4}}{\text{4}}\text{=6}$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1}\text{.2}\text{.3+2}\text{.3}\text{.4+}...\text{+k}\left( \text{k+1} \right)\left( \text{k+2} \right)\text{=}\dfrac{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}{\text{4}}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1}\text{.2}\text{.3+2}\text{.3}\text{.4+}...\text{+k}\left( \text{k+1} \right)\left( \text{k+2} \right)\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)$ 

$\text{=}\left\{ \text{1}\text{.2}\text{.3+2}\text{.3}\text{.4+}...\text{+k}\left( \text{k+1} \right)\left( \text{k+2} \right) \right\}\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)\text{+}\left( \text{k+3} \right)$

$\text{=}\dfrac{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}{\text{4}}\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)$     [Using (i)]

$\text{=}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)\left( \dfrac{\text{k}}{\text{4}}\text{+1} \right)$

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)\left( \text{k+4} \right)}{\text{4}}$

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{k+1+1} \right)\left( \text{k+1+2} \right)\left( \text{k+1+3} \right)}{\text{4}}$

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

5. Prove the following by using the principle of mathematical induction for all \[\text{n}\in \text{N}\]:

$\text{1}\text{.3+2}\text{.}{{\text{3}}^{\text{2}}}\text{+3}\text{.}{{\text{3}}^{\text{3}}}\text{+}...\text{+n}\text{.}{{\text{3}}^{\text{n}}}\text{=}\dfrac{\left( \text{2n-1} \right){{\text{3}}^{\text{n+1}}}\text{+3}}{\text{4}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1}\text{.3+2}\text{.}{{\text{3}}^{\text{2}}}\text{+3}\text{.}{{\text{3}}^{\text{3}}}\text{+}...\text{+n}{{\text{3}}^{\text{n}}}\text{=}\dfrac{\left( \text{2n-1} \right){{\text{3}}^{\text{n+1}}}\text{+3}}{\text{4}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=1}\text{.}{{\text{3}}^{1}}=3\]

$\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\left( \text{2}\text{.1-1} \right){{\text{3}}^{\text{1+1}}}\text{+3}}{\text{4}}\text{=}\dfrac{{{\text{3}}^{\text{2}}}\text{+3}}{\text{4}}\text{=}\dfrac{\text{12}}{\text{4}}\text{=3}$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1}\text{.3+2}\text{.}{{\text{3}}^{\text{2}}}\text{+3}\text{.}{{\text{3}}^{\text{3}}}\text{+}...\text{+k}{{\text{3}}^{\text{k}}}\text{=}\dfrac{\left( \text{2k-1} \right){{\text{3}}^{\text{k+1}}}\text{+3}}{\text{4}}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1}\text{.3+2}\text{.}{{\text{3}}^{\text{2}}}\text{+3}\text{.}{{\text{3}}^{\text{3}}}\text{+}...\text{+k}\text{.}{{\text{3}}^{\text{k}}}\text{+}\left( \text{k+1} \right)\text{.}{{\text{3}}^{\text{k+1}}}$ 

$\text{=}\left( \text{1}\text{.3+2}\text{.}{{\text{3}}^{\text{2}}}\text{+3}\text{.}{{\text{3}}^{\text{3}}}\text{+}...\text{+k}\text{.}{{\text{3}}^{\text{k}}} \right)\text{+}\left( \text{k+1} \right)\text{.}{{\text{3}}^{\text{k+1}}}$ 

$\text{=}\dfrac{\left( \text{2k-1} \right){{\text{3}}^{\text{k+1}}}\text{+3}}{\text{4}}\text{+}\left( \text{k+1} \right){{\text{3}}^{\text{k-1}}}$           [Using (i)]

$\text{=}\dfrac{\left( \text{2k-1} \right){{\text{3}}^{\text{k+1}}}\text{+3+4}\left( \text{k+1} \right){{\text{3}}^{\text{k+1}}}}{\text{4}}$ 

$\text{=}\dfrac{{{\text{3}}^{\text{k+1}}}\left\{ \text{2k-1+4}\left( \text{k+1} \right) \right\}\text{+3}}{\text{4}}$ 

$\text{=}\dfrac{{{\text{3}}^{\text{k+1}}}\left\{ \text{6k+3} \right\}\text{+3}}{\text{4}}$ 

$\text{=}\dfrac{{{\text{3}}^{\text{k+1}}}\text{.3}\left\{ \text{2k+1} \right\}\text{+3}}{\text{4}}$
$\text{=}\dfrac{{{\text{3}}^{\left( \text{k+1} \right)\text{+1}}}\left\{ \text{2k+1} \right\}\text{+3}}{\text{4}}$ 

$\text{=}\dfrac{\left\{ \text{2}\left( \text{k+1} \right)\text{-1} \right\}{{\text{3}}^{\left( \text{k+1} \right)\text{+1}}}\text{+3}}{\text{4}}$ 

      Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

6. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1}\text{.2+2}\text{.3+3}\text{.4+}...\text{+n}\text{.}\left( \text{n+1} \right)\text{=}\left[ \dfrac{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)}{\text{3}} \right]$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1}\text{.2+2}\text{.3+3}\text{.4+}...\text{+n}\text{.}\left( \text{n+1} \right)\text{=}\left[ \dfrac{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)}{\text{3}} \right]$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=1}\text{.2=2}\]

$\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}\left( \text{1+1} \right)\left( \text{1+2} \right)}{\text{3}}\text{=}\dfrac{\text{1}\text{.2}\text{.3}}{\text{3}}\text{=2}$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1}\text{.2+2}\text{.3+3}\text{.4+}...\text{+k}\text{.}\left( \text{k+1} \right)\text{=}\left[ \dfrac{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)}{\text{3}} \right]...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1}\text{.2+2}\text{.3+3}\text{.4+}...\text{+k}\text{.}\left( \text{k+1} \right)\text{+}\left( \text{k+1} \right)\text{.}\left( \text{k+2} \right)$ 

$\text{=}\left[ \text{1}\text{.2+2}\text{.3+3}\text{.4+}...\text{+k}\text{.}\left( \text{k+1} \right) \right]\text{+}\left( \text{k+1} \right)\text{.}\left( \text{k+2} \right)$ 

$\text{=}\dfrac{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)}{\text{3}}\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)$         [Using (i)]

$\text{=}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \dfrac{\text{k}}{\text{3}}\text{+1} \right)$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{k+1+1} \right)\left( \text{k+1+2} \right)}{\text{3}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

7. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1}\text{.3+3}\text{.5+5}\text{.7+}...\text{+}\left( \text{2n-1} \right)\left( \text{2n+1} \right)\text{=}\dfrac{\text{n}\left( \text{4}{{\text{n}}^{\text{2}}}\text{+6n-1} \right)}{\text{3}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1}\text{.3+3}\text{.5+5}\text{.7+}...\text{+}\left( \text{2n-1} \right)\left( \text{2n+1} \right)\text{=}\dfrac{\text{n}\left( \text{4}{{\text{n}}^{\text{2}}}\text{+6n-1} \right)}{\text{3}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=1}\text{.3=3}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}\left( \text{4}\text{.}{{\text{1}}^{\text{2}}}\text{+6}\text{.1-1} \right)}{\text{3}}\text{=}\dfrac{\text{4+6-1}}{\text{3}}\text{=}\dfrac{\text{9}}{\text{3}}\text{=3}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1}\text{.3+3}\text{.5+5}\text{.7+}...\text{+}\left( \text{2k-1} \right)\left( \text{2k+1} \right)\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+6k-1} \right)}{\text{3}}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left( \text{1}\text{.3+3}\text{.5+5}\text{.7+}...\text{+}\left( \text{2k-1} \right)\left( \text{2k+1} \right) \right)\text{+}\left\{ \left( \text{k+1} \right)\text{-1} \right\}\left\{ \text{2}\left( \text{k+1} \right)\text{+1} \right\}$ 

$\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+6k-1} \right)}{\text{3}}\text{+}\left( \text{2k+2-1} \right)\left( \text{2k+2+1} \right)$   [Using (i)]

$\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+6k-1} \right)}{\text{3}}\text{+}\left( \text{2k+1} \right)\left( \text{2k+3} \right)$ 

$\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+6k-1} \right)}{\text{3}}\text{+}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+8k+3} \right)$ 

$\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+6k-1} \right)\text{+3}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+8k+3} \right)}{\text{3}}$ 

$\text{=}\dfrac{\text{4}{{\text{k}}^{\text{3}}}\text{+6}{{\text{k}}^{\text{2}}}\text{-k+12}{{\text{k}}^{\text{2}}}\text{+24k+9}}{\text{3}}$ 

$\text{=}\dfrac{\text{4}{{\text{k}}^{\text{3}}}\text{+18}{{\text{k}}^{\text{2}}}\text{+23k+9}}{\text{3}}$ 

$\text{=}\dfrac{\text{4}{{\text{k}}^{\text{3}}}\text{+14}{{\text{k}}^{\text{2}}}\text{+9k+4}{{\text{k}}^{\text{2}}}\text{+14k+9}}{\text{3}}$ 

$\text{=}\dfrac{\text{k}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+14k+9} \right)\text{+1}\left( \text{4}{{\text{k}}^{\text{2}}}\text{+14k+9} \right)}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{4}{{\text{k}}^{\text{2}}}\text{+14k+9} \right)}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left\{ \text{4}{{\text{k}}^{\text{2}}}\text{+8k+4+6k+6-1} \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left\{ \text{4}\left( {{\text{k}}^{\text{2}}}\text{+2k+1} \right)\text{+6}\left( \text{k+1} \right)\text{-1} \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left\{ \text{4}{{\left( \text{k+1} \right)}^{\text{2}}}\text{+6}\left( \text{k+1} \right)\text{-1} \right\}}{\text{3}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

8. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1}\text{.2+2}\text{.}{{\text{2}}^{\text{2}}}\text{+3}\text{.}{{\text{2}}^{\text{2}}}\text{+}....\text{+n}\text{.}{{\text{2}}^{\text{n}}}\text{=}\left( \text{n-1} \right){{\text{2}}^{\text{n+1}}}\text{+2}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1}\text{.2+2}\text{.}{{\text{2}}^{\text{2}}}\text{+3}\text{.}{{\text{2}}^{\text{2}}}\text{+}....\text{+n}\text{.}{{\text{2}}^{\text{n}}}\text{=}\left( \text{n-1} \right){{\text{2}}^{\text{n+1}}}\text{+2}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=1}\text{.2=2}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\left( \text{1-1} \right){{\text{2}}^{\text{1+1}}}\text{+2=0+2=2}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1}\text{.2+2}\text{.}{{\text{2}}^{\text{2}}}\text{+3}\text{.}{{\text{2}}^{\text{2}}}\text{+}...\text{+k}\text{.}{{\text{2}}^{\text{k}}}\text{=}\left( \text{k-1} \right){{\text{2}}^{\text{k+1}}}\text{+2}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left\{ \text{1}\text{.2+2}\text{.}{{\text{2}}^{\text{2}}}\text{+3}\text{.}{{\text{2}}^{\text{2}}}\text{+}...\text{+k}\text{.}{{\text{2}}^{\text{k}}} \right\}\text{+}\left( \text{k+1} \right)\text{.}{{\text{2}}^{\text{k+1}}}$ 

$\text{=}\left( \text{k-1} \right){{\text{2}}^{\text{k+1}}}\text{+2+}\left( \text{k+1} \right){{\text{2}}^{\text{k+1}}}$ 

$\text{=}{{\text{2}}^{\text{k+1}}}\left\{ \left( \text{k-1} \right)\text{+}\left( \text{k+1} \right) \right\}\text{+2}$ 

$\text{=}{{\text{2}}^{\text{k+1}}}\text{.2k+2}$ 

$\text{=k}\text{.}{{\text{2}}^{\left( \text{k+1} \right)\text{+1}}}\text{+2}$ 

$\text{=}\left\{ \left( \text{k+1} \right)\text{-1} \right\}{{\text{2}}^{\left( \text{k+1} \right)\text{+1}}}\text{+2}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

9. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

\[\dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{1}}{\text{4}}\text{+}\dfrac{\text{1}}{\text{8}}\text{+}...\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{n}}}}\text{=1-}\dfrac{\text{1}}{{{\text{2}}^{\text{n}}}}\] 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}\dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{1}}{\text{4}}\text{+}\dfrac{\text{1}}{\text{8}}\text{+}...\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{n}}}}\text{=1-}\dfrac{\text{1}}{{{\text{2}}^{\text{n}}}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{1}{2}\]

\[\text{R}\text{.H}\text{.S}\text{.=1-}\dfrac{\text{1}}{{{\text{2}}^{\text{1}}}}\text{=}\dfrac{\text{1}}{\text{2}}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

\[\dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{1}}{\text{4}}\text{+}\dfrac{\text{1}}{\text{8}}\text{+}...\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}}\text{=1-}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}}...\text{(i)}\] 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left( \dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{1}}{\text{4}}\text{+}\dfrac{\text{1}}{\text{8}}\text{+}...\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}} \right)\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{k+1}}}}$ 

$\text{=}\left( \text{1-}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}} \right)\text{+}\dfrac{\text{1}}{{{\text{2}}^{\text{k+1}}}}$      [Using (i)]

$\text{1-}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}}\left( \text{1-}\dfrac{\text{1}}{\text{2}} \right)$ 

$\text{=1-}\dfrac{\text{1}}{{{\text{2}}^{\text{k}}}}\left( \dfrac{\text{1}}{\text{2}} \right)$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

10. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\dfrac{\text{1}}{\text{2}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.8}}\text{+}\dfrac{\text{1}}{\text{8}\text{.11}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3n-1} \right)\left( \text{3n+2} \right)}\text{=}\dfrac{\text{n}}{\left( \text{6n+4} \right)}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}\dfrac{\text{1}}{\text{2}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.8}}\text{+}\dfrac{\text{1}}{\text{8}\text{.11}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3n-1} \right)\left( \text{3n+2} \right)}\text{=}\dfrac{\text{n}}{\left( \text{6n+4} \right)}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{2}\text{.5}}\text{=}\dfrac{\text{1}}{\text{10}}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{6}\text{.1+4}}\text{=}\dfrac{\text{1}}{\text{10}}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\dfrac{\text{1}}{\text{2}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.8}}\text{+}\dfrac{\text{1}}{\text{8}\text{.11}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3k+1} \right)\left( \text{3k+2} \right)}\text{=}\dfrac{\text{k}}{\left( \text{6k+4} \right)}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\dfrac{\text{1}}{\text{2}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.8}}\text{+}\dfrac{\text{1}}{\text{8}\text{.11}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3k+1} \right)\left( \text{3k+2} \right)}\text{+}\dfrac{\text{1}}{\left\{ \text{3}\left( \text{k+1} \right)\text{-1} \right\}\left\{ \text{3}\left( \text{k+1} \right)\text{+2} \right\}}$ 

$\text{=}\dfrac{\text{k}}{\text{6k+4}}\text{+}\dfrac{\text{1}}{\left( \text{3k+3-1} \right)\left( \text{3k+3+2} \right)}$        [Using (i)]

$\text{=}\dfrac{\text{k}}{\text{6k+4}}\text{+}\dfrac{\text{1}}{\left( \text{3k+2} \right)\left( \text{3k+5} \right)}$ 

$\text{=}\dfrac{\text{k}}{\text{2}\left( \text{3k+2} \right)}\text{+}\dfrac{\text{1}}{\left( \text{3k+2} \right)\left( \text{3k+5} \right)}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{3k+2} \right)}\left( \dfrac{\text{k}}{\text{2}}\text{+}\dfrac{\text{1}}{\text{3k+5}} \right)$ 

     \[\text{=}\dfrac{\text{1}}{\left( \text{3k+2} \right)}\left( \dfrac{\text{k}\left( \text{3k+5} \right)\text{+2}}{\text{2}\left( \text{3k+5} \right)} \right)\] 

    $\text{=}\dfrac{\text{1}}{\left( \text{3k+2} \right)}\left( \dfrac{\text{3}{{\text{k}}^{\text{2}}}\text{+5k+2}}{\text{2}\left( \text{3k+5} \right)} \right)$ 

    $\text{=}\dfrac{\text{1}}{\left( \text{3k+2} \right)}\left( \dfrac{\left( \text{3k+2} \right)\left( \text{k+1} \right)}{\text{2}\left( \text{3k+5} \right)} \right)$ 

     $\text{=}\dfrac{\left( \text{k+1} \right)}{\text{6k+10}}$ 

     $\text{=}\dfrac{\left( \text{k+1} \right)}{\text{6}\left( \text{k+1} \right)\text{+4}}$     

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle 

of mathematical induction.

11. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\dfrac{\text{1}}{\text{1}\text{.2}\text{.3}}\text{+}\dfrac{\text{1}}{\text{2}\text{.3}\text{.4}}\text{+}\dfrac{\text{1}}{\text{3}\text{.4}\text{.5}}\text{+}...\text{+}\dfrac{\text{1}}{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)}\text{=}\dfrac{\text{n}\left( \text{n+3} \right)}{\text{4}\left( \text{n+1} \right)\left( \text{n+2} \right)}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}\dfrac{\text{1}}{\text{1}\text{.2}\text{.3}}\text{+}\dfrac{\text{1}}{\text{2}\text{.3}\text{.4}}\text{+}\dfrac{\text{1}}{\text{3}\text{.4}\text{.5}}\text{+}...\text{+}\dfrac{\text{1}}{\text{n}\left( \text{n+1} \right)\left( \text{n+2} \right)}\text{=}\dfrac{\text{n}\left( \text{n+3} \right)}{\text{4}\left( \text{n+1} \right)\left( \text{n+2} \right)}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{1}\text{.2}\text{.3}}=\dfrac{1}{6}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}\text{.}\left( \text{1+3} \right)}{\text{4}\left( \text{1+1} \right)\left( \text{1+2} \right)}\text{=}\dfrac{\text{1}\text{.4}}{\text{4}\text{.2}\text{.3}}\text{=}\dfrac{\text{1}}{6}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\dfrac{\text{1}}{\text{1}\text{.2}\text{.3}}\text{+}\dfrac{\text{1}}{\text{2}\text{.3}\text{.4}}\text{+}\dfrac{\text{1}}{\text{3}\text{.4}\text{.5}}\text{+}...\text{+}\dfrac{\text{1}}{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)}\text{=}\dfrac{\text{k}\left( \text{k+3} \right)}{\text{4}\left( \text{k+1} \right)\left( \text{k+2} \right)}...(i)$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left[ \dfrac{\text{1}}{\text{1}\text{.2}\text{.3}}\text{+}\dfrac{\text{1}}{\text{2}\text{.3}\text{.4}}\text{+}\dfrac{\text{1}}{\text{3}\text{.4}\text{.5}}\text{+}...\text{+}\dfrac{\text{1}}{\text{k}\left( \text{k+1} \right)\left( \text{k+2} \right)} \right]\text{+}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}$ 

$\text{=}\dfrac{\text{k}\left( \text{k+3} \right)}{\text{4}\left( \text{k+1} \right)\left( \text{k+2} \right)}\text{+}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}$      [Using (i)]

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{\text{k}\left( \text{k+3} \right)}{\text{4}}\text{+}\dfrac{\text{1}}{\text{k+3}} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{\text{k}{{\left( \text{k+3} \right)}^{\text{2}}}\text{+4}}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{\text{k}\left( {{\text{k}}^{\text{2}}}\text{+6k+9} \right)\text{+4}}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{{{\text{k}}^{\text{3}}}\text{+6}{{\text{k}}^{\text{2}}}\text{+9k+4}}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{{{\text{k}}^{\text{3}}}\text{+2}{{\text{k}}^{\text{2}}}\text{+k+4}{{\text{k}}^{\text{2}}}\text{+8k+4}}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{\text{k}\left( {{\text{k}}^{\text{2}}}\text{+2k+1} \right)\text{+4}\left( {{\text{k}}^{\text{2}}}\text{+2k+1} \right)}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{k+1} \right)\left( \text{k+2} \right)}\left\{ \dfrac{\text{k}{{\left( \text{k+1} \right)}^{\text{2}}}\text{+4}{{\left( \text{k+1} \right)}^{\text{2}}}}{\text{4}\left( \text{k+3} \right)} \right\}$ 

$\text{=}\dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}\left( \text{k+4} \right)}{\text{4}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+3} \right)}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left\{ \left( \text{k+1} \right)\text{+3} \right\}}{\text{4}\left\{ \left( \text{k+1} \right)\text{+1} \right\}\left\{ \left( \text{k+1} \right)\text{+2} \right\}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

12. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{a+ar+a}{{\text{r}}^{\text{2}}}\text{+}...\text{+a}{{\text{r}}^{\text{n-1}}}\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{n}}}\text{-1} \right)}{\text{r-1}}$

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:a+ar+a}{{\text{r}}^{\text{2}}}\text{+}...\text{+a}{{\text{r}}^{\text{n-1}}}\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{n}}}\text{-1} \right)}{\text{r-1}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=a}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{a}\left( {{\text{r}}^{\text{1}}}\text{-1} \right)}{\left( \text{r-1} \right)}\text{=a}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{a+ar+a}{{\text{r}}^{\text{2}}}\text{+}...\text{+a}{{\text{r}}^{\text{k-1}}}\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{k}}}\text{-1} \right)}{\text{r-1}}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left\{ \text{a+ar+a}{{\text{r}}^{\text{2}}}\text{+}...\text{+a}{{\text{r}}^{\text{k-1}}} \right\}\text{+a}{{\text{r}}^{\left( \text{k+1} \right)\text{-1}}}$ 

$\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{k}}}\text{-1} \right)}{\text{r-1}}\text{+a}{{\text{r}}^{\text{k}}}$      [Using (i)]

$\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{k}}}\text{-1} \right)\text{+a}{{\text{r}}^{\text{k}}}\left( \text{r-1} \right)}{\text{r-1}}$ 

$\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{k}}}\text{-1} \right)\text{+a}{{\text{r}}^{\text{k+1}}}\text{-a}{{\text{r}}^{\text{k}}}}{\text{r-1}}$ 

$\text{=}\dfrac{\text{a}{{\text{r}}^{\text{k}}}\text{-a+a}{{\text{r}}^{\text{k+1}}}\text{-a}{{\text{r}}^{\text{k}}}}{\text{r-1}}$ 

$\text{=}\dfrac{\text{a}{{\text{r}}^{\text{k+1}}}\text{-a}}{\text{r-1}}$ 

$\text{=}\dfrac{\text{a}\left( {{\text{r}}^{\text{k+1}}}\text{-1} \right)}{\text{r-1}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

13. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\left( \text{1+}\dfrac{\text{3}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{5}}{\text{4}} \right)\left( \text{1+}\dfrac{\text{7}}{\text{9}} \right)...\left( \text{1+}\dfrac{\left( \text{2n+1} \right)}{{{\text{n}}^{\text{2}}}} \right)\text{=}{{\left( \text{n+1} \right)}^{\text{2}}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

\[\text{P}\left( \text{n} \right)\text{:}\left( \text{1+}\dfrac{\text{3}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{5}}{\text{4}} \right)\left( \text{1+}\dfrac{\text{7}}{\text{9}} \right)...\left( \text{1+}\dfrac{\left( \text{2n+1} \right)}{{{\text{n}}^{\text{2}}}} \right)\text{=}{{\left( \text{n+1} \right)}^{\text{2}}}\] 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\left( \text{1+}\dfrac{\text{3}}{\text{1}} \right)\text{=4}\]

\[\text{R}\text{.H}\text{.S}\text{.=}{{\left( \text{1+1} \right)}^{\text{2}}}\text{=}{{\text{2}}^{\text{2}}}\text{=4}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

\[\left( \text{1+}\dfrac{\text{3}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{5}}{\text{4}} \right)\left( \text{1+}\dfrac{\text{7}}{\text{9}} \right)...\left( \text{1+}\dfrac{\left( \text{2k+1} \right)}{{{\text{k}}^{\text{2}}}} \right)\text{=}{{\left( \text{k+1} \right)}^{\text{2}}}...(i)\] 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left[ \left( \text{1+}\dfrac{\text{3}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{5}}{\text{4}} \right)\left( \text{1+}\dfrac{\text{7}}{\text{9}} \right)...\left( \text{1+}\dfrac{\left( \text{2k+1} \right)}{{{\text{k}}^{\text{2}}}} \right) \right]\left\{ \text{1+}\dfrac{\left\{ \text{2}\left( \text{k+1} \right)\text{+1} \right\}}{{{\left( \text{k+1} \right)}^{\text{2}}}} \right\}$ 

$\text{=}{{\left( \text{k+1} \right)}^{\text{2}}}\left( \text{1+}\dfrac{\text{2}\left( \text{k+1} \right)\text{+1}}{{{\left( \text{k+1} \right)}^{\text{2}}}} \right)$         [Using (i)]

$\text{=}{{\left( \text{k+1} \right)}^{\text{2}}}\left[ \dfrac{{{\left( \text{k+1} \right)}^{\text{2}}}\text{+2}\left( \text{k+1} \right)\text{+1}}{{{\left( \text{k+1} \right)}^{\text{2}}}} \right]$ 

$={{\left( \text{k+1} \right)}^{\text{2}}}+2\left( k+1 \right)+1$ 

$\text{=}{{\left\{ \left( \text{k+1} \right)\text{+1} \right\}}^{\text{2}}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

14. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\left( \text{1+}\dfrac{\text{1}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{2}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{3}} \right)...\left( \text{1+}\dfrac{\text{1}}{\text{n}} \right)\text{=}\left( \text{n+1} \right)$

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}\left( \text{1+}\dfrac{\text{1}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{2}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{3}} \right)...\left( \text{1+}\dfrac{\text{1}}{\text{n}} \right)\text{=}\left( \text{n+1} \right)$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\left( \text{1+}\dfrac{\text{1}}{\text{1}} \right)\text{=2}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\left( \text{1+1} \right)=2\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{P}\left( \text{k} \right)\text{:}\left( \text{1+}\dfrac{\text{1}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{2}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{3}} \right)...\left( \text{1+}\dfrac{\text{1}}{\text{n}} \right)\text{=}\left( \text{k+1} \right)...(i)$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left[ \text{P}\left( \text{k} \right)\text{:}\left( \text{1+}\dfrac{\text{1}}{\text{1}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{2}} \right)\left( \text{1+}\dfrac{\text{1}}{\text{3}} \right)...\left( \text{1+}\dfrac{\text{1}}{\text{k}} \right) \right]\left( \text{1+}\dfrac{\text{1}}{\text{k+1}} \right)$ 

$\text{=}\left( \text{k+1} \right)\left( \text{1+}\dfrac{\text{1}}{\text{k+1}} \right)$           [Using (i)]

$\text{=}\left( \text{k+1} \right)\left[ \dfrac{\left( \text{k+1} \right)\text{+1}}{\left( \text{k+1} \right)} \right]$ 

$\text{=}\left( \text{k+1} \right)\text{+1}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

15. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

${{\text{1}}^{\text{2}}}\text{+}{{\text{3}}^{\text{2}}}\text{+}{{\text{5}}^{\text{2}}}\text{+}...\text{+}{{\left( \text{2n-1} \right)}^{\text{2}}}\text{=}\dfrac{\text{n}\left( \text{2n-1} \right)\left( \text{2n+1} \right)}{\text{3}}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}{{\text{1}}^{\text{2}}}\text{+}{{\text{3}}^{\text{2}}}\text{+}{{\text{5}}^{\text{2}}}\text{+}...\text{+}{{\left( \text{2n-1} \right)}^{\text{2}}}\text{=}\dfrac{\text{n}\left( \text{2n-1} \right)\left( \text{2n+1} \right)}{\text{3}}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}{{\text{1}}^{\text{2}}}\text{=1}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}\left( \text{2}\text{.1-1} \right)\left( \text{2}\text{.1+1} \right)}{\text{3}}\text{=}\dfrac{\text{1}\text{.1}\text{.3}}{\text{3}}\text{=1}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{P}\left( \text{k} \right)\text{:}{{\text{1}}^{\text{2}}}\text{+}{{\text{3}}^{\text{2}}}\text{+}{{\text{5}}^{\text{2}}}\text{+}...\text{+}{{\left( \text{2n-1} \right)}^{\text{2}}}\text{=}\dfrac{\text{k}\left( \text{2k-1} \right)\left( \text{2k+1} \right)}{\text{3}}...(i)$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left\{ {{\text{1}}^{\text{2}}}\text{+}{{\text{3}}^{\text{2}}}\text{+}{{\text{5}}^{\text{2}}}\text{+}...\text{+}{{\left( \text{2k-1} \right)}^{\text{2}}} \right\}\text{+}{{\left\{ \text{2}\left( \text{k+1} \right)\text{-1} \right\}}^{\text{2}}}$ 

$\text{=}\dfrac{\text{k}\left( \text{2k-1} \right)\left( \text{2k+1} \right)}{\text{3}}\text{+}{{\left( \text{2k+2-1} \right)}^{\text{2}}}$      [Using (i)]

$\text{=}\dfrac{\text{k}\left( \text{2k-1} \right)\left( \text{2k+1} \right)}{\text{3}}\text{+}{{\left( \text{2k+1} \right)}^{\text{2}}}$ 

$\text{=}\dfrac{\text{2}\left( \text{2k-1} \right)\left( \text{2k+1} \right)\text{+3}{{\left( \text{2k+1} \right)}^{\text{2}}}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left\{ \text{k}\left( \text{2k-1} \right)\text{+3}\left( \text{2k+1} \right) \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left\{ \text{2}{{\text{k}}^{\text{2}}}\text{-k+6k+3} \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left\{ \text{2}{{\text{k}}^{\text{2}}}\text{+5k+3} \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left\{ \text{2}{{\text{k}}^{\text{2}}}\text{+2k+3k+3} \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left\{ \text{2k}\left( \text{k+1} \right)\text{+3}\left( \text{k+1} \right) \right\}}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{2k+1} \right)\left( \text{k+1} \right)\left( \text{2k+3} \right)}{\text{3}}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left\{ \text{2}\left( \text{k+1} \right)\text{-1} \right\}\left\{ \text{2}\left( \text{k+1} \right)\text{+1} \right\}}{\text{3}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

16. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\dfrac{\text{1}}{\text{1}\text{.4}}\text{+}\dfrac{\text{1}}{\text{4}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.10}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3n-2} \right)\left( \text{3n+1} \right)}\text{=}\dfrac{\text{n}}{\left( \text{3n+1} \right)}$ 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:}\dfrac{\text{1}}{\text{1}\text{.4}}\text{+}\dfrac{\text{1}}{\text{4}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.10}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3n-2} \right)\left( \text{3n+1} \right)}\text{=}\dfrac{\text{n}}{\left( \text{3n+1} \right)}$ 

For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{1}{1.4}=\dfrac{1}{4}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{3}\text{.1+1}}\text{=}\dfrac{\text{1}}{\text{4}}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{P}\left( \text{k} \right)\text{:}\dfrac{\text{1}}{\text{1}\text{.4}}\text{+}\dfrac{\text{1}}{\text{4}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.10}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3k-2} \right)\left( \text{3k+1} \right)}\text{=}\dfrac{\text{k}}{\left( \text{3k+1} \right)}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left\{ \dfrac{\text{1}}{\text{1}\text{.4}}\text{+}\dfrac{\text{1}}{\text{4}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.10}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{3k-2} \right)\left( \text{3k+1} \right)} \right\}\text{+}\dfrac{\text{1}}{\left\{ \text{3}\left( \text{k+1} \right)\text{-2} \right\}\left\{ \text{3}\left( \text{k+1} \right)\text{+1} \right\}}$ 

$\text{=}\dfrac{\text{k}}{\text{3k+1}}\text{+}\dfrac{\text{1}}{\left( \text{3k+1} \right)\left( \text{3k+4} \right)}$        [Using (i)]

$\text{=}\dfrac{\text{1}}{\left( \text{3k+1} \right)}\left\{ \text{k+}\dfrac{\text{1}}{\left( \text{3k+4} \right)} \right\}$

$\text{=}\dfrac{\text{1}}{\left( \text{3k+1} \right)}\left\{ \dfrac{\text{k}\left( \text{3k+4} \right)\text{+1}}{\left( \text{3k+4} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{3k+1} \right)}\left\{ \dfrac{\text{3}{{\text{k}}^{\text{2}}}\text{+4k+1}}{\left( \text{3k+4} \right)} \right\}$ 

$\text{=}\dfrac{\text{1}}{\left( \text{3k+1} \right)}\left\{ \dfrac{\text{3}{{\text{k}}^{\text{2}}}\text{+3k+k+1}}{\left( \text{3k+4} \right)} \right\}$ 

$\text{=}\dfrac{\left( \text{3k+1} \right)\left( \text{k+1} \right)}{\left( \text{3k+1} \right)\left( \text{3k+4} \right)}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)}{\text{3}\left( \text{k+1} \right)\text{+1}}$  

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

17. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\dfrac{\text{1}}{\text{3}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.9}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{2n+1} \right)\left( \text{2n+3} \right)}\text{=}\dfrac{\text{n}}{\text{2}\left( \text{2n+3} \right)}$ 

Ans: For $\text{n=1}$, 

\[\text{L}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{3}\text{.5}}\]

\[\text{R}\text{.H}\text{.S}\text{.=}\dfrac{\text{1}}{\text{3}\left( \text{2}\text{.1+3} \right)}\text{=}\dfrac{\text{1}}{\text{3}\text{.5}}\]

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{P}\left( \text{k} \right)\text{:}\dfrac{\text{1}}{\text{3}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.9}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{2k+1} \right)\left( \text{2k+3} \right)}\text{=}\dfrac{\text{k}}{\text{2}\left( \text{2k+3} \right)}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\left[ \dfrac{\text{1}}{\text{3}\text{.5}}\text{+}\dfrac{\text{1}}{\text{5}\text{.7}}\text{+}\dfrac{\text{1}}{\text{7}\text{.9}}\text{+}...\text{+}\dfrac{\text{1}}{\left( \text{2k+1} \right)\left( \text{2k+3} \right)} \right]\text{+}\dfrac{\text{1}}{\left\{ \text{2}\left( \text{k+1} \right)\text{+1} \right\}\left\{ \text{2}\left( \text{k+1} \right)\text{+3} \right\}}$ 

$\text{=}\dfrac{\text{k}}{\text{3}\left( \text{2k+3} \right)}\text{+}\dfrac{\text{1}}{\left( \text{2k+3} \right)\left( \text{2k+5} \right)}$           [Using (i)]

$\text{=}\dfrac{\text{1}}{\left( \text{2k+3} \right)}\left[ \dfrac{\text{k}}{\text{3}}\text{+}\dfrac{\text{1}}{\left( \text{2k+5} \right)} \right]$ 

$\text{=}\dfrac{\text{1}}{\left( \text{2k+3} \right)}\left[ \dfrac{\text{k}\left( \text{2k+5} \right)\text{+3}}{\text{3}\left( \text{2k+5} \right)} \right]$ 

$\text{=}\dfrac{\text{1}}{\left( \text{2k+3} \right)}\left[ \dfrac{\text{2}{{\text{k}}^{\text{2}}}\text{+5k+3}}{\text{3}\left( \text{2k+5} \right)} \right]$ 

$\text{=}\dfrac{\text{1}}{\left( \text{2k+3} \right)}\left[ \dfrac{\text{2}{{\text{k}}^{\text{2}}}\text{+2k+3k+3}}{\text{3}\left( \text{2k+5} \right)} \right]$ 

$\text{=}\dfrac{\text{1}}{\left( \text{2k+3} \right)}\left[ \dfrac{\text{2k}\left( \text{k+1} \right)\text{+3}\left( \text{k+1} \right)}{\text{3}\left( \text{2k+5} \right)} \right]$ 

$\text{=}\dfrac{\left( \text{k+1} \right)\left( \text{2k+3} \right)}{\text{3}\left( \text{2k+3} \right)\left( \text{2k+5} \right)}$ 

$\text{=}\dfrac{\left( \text{k+1} \right)}{\text{3}\left\{ \text{2}\left( \text{k+1} \right)\text{+3} \right\}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

18. Prove the following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

\[\text{1+2+3+}...\text{+n}\dfrac{\text{1}}{\text{8}}{{\left( \text{2n+1} \right)}^{\text{2}}}\] 

Ans: Let us denote the given equality by $\text{P(n),}$ i.e.,

$\text{P}\left( \text{n} \right)\text{:1+2+3+}...\text{+n}\dfrac{\text{1}}{\text{8}}{{\left( \text{2n+1} \right)}^{\text{2}}}$ 

For $\text{n=1}$,

$\text{1}\dfrac{\text{1}}{\text{8}}{{\left( \text{2}\text{.1+1} \right)}^{\text{2}}}\text{=}\dfrac{\text{9}}{\text{8}}$

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some positive integer $\text{k}$, i.e.,

$\text{1+2+3+}...\text{+k}\dfrac{\text{1}}{\text{8}}{{\left( \text{2k+1} \right)}^{\text{2}}}...\text{(i)}$ 

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true.

Consider

$\text{1+2+3+}...\text{+k+}\left( \text{k+1} \right)\text{}\dfrac{\text{1}}{\text{8}}{{\left( \text{2k+1} \right)}^{\text{2}}}\text{+}\left( \text{k+1} \right)$        [Using (i)]

$\text{}\dfrac{\text{1}}{\text{8}}\left\{ {{\left( \text{2k+1} \right)}^{\text{2}}}\text{+8}\left( \text{k+1} \right) \right\}$ 

$\text{}\dfrac{\text{1}}{\text{8}}\left\{ \text{4}{{\text{k}}^{\text{2}}}\text{+4k+1+8k+8} \right\}$ 

$\text{}\dfrac{\text{1}}{\text{8}}\left\{ \text{4}{{\text{k}}^{\text{2}}}\text{+12k+9} \right\}$ 

$\text{}\dfrac{\text{1}}{\text{8}}{{\left( \text{2k+3} \right)}^{\text{2}}}$ 

$\text{}\dfrac{\text{1}}{\text{8}}{{\left\{ \text{2}\left( \text{k+1} \right)\text{+1} \right\}}^{\text{2}}}$ 

Hence, $\text{1+2+3+}...\text{+k+}\left( \text{k+1} \right)\text{}\dfrac{\text{1}}{\text{8}}{{\left( \text{2k+1} \right)}^{\text{2}}}\text{+}\left( \text{k+1} \right)$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

19. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{n}\left( \text{n+1} \right)\left( \text{n+5} \right)$is a multiple of $\text{3}$.

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right):\text{n}\left( \text{n+1} \right)\left( \text{n+5} \right)$, which is a multiple of $3$.

For $\text{n=1}$,

$\text{1}\left( \text{1+1} \right)\left( \text{1+5} \right)\text{=12}$, which is a multiple of $3$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

$\text{k}\left( \text{k+1} \right)\left( \text{k+5} \right)$ is a multiple of $3$.

$\therefore \text{k}\left( \text{k+1} \right)\left( \text{k+5} \right)\text{=3m}$, where $\text{m}\in \text{N}$ …(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

$\left( \text{k+1} \right)\left\{ \left( \text{k+1} \right)\text{+1} \right\}\left\{ \left( \text{k+1} \right)\text{+5} \right\}$ 

$\text{=}\left( \text{k+1} \right)\left( \text{k+2} \right)\left\{ \left( \text{k+1} \right)\text{+5} \right\}$ 

$\text{=}\left( \text{k+1} \right)\left( \text{k+2} \right)\left( \text{k+5} \right)\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)$ 

$\text{=}\left\{ \text{k}\left( \text{k+1} \right)\left( \text{k+5} \right)\text{+2}\left( \text{k+1} \right)\left( \text{k+5} \right) \right\}\text{+}\left( \text{k+1} \right)\left( \text{k+2} \right)$ 

$\text{=3m+}\left( \text{k+1} \right)\left\{ \text{2}\left( \text{k+5} \right)\text{+}\left( \text{k+2} \right) \right\}$ 

$\text{=3m+}\left( \text{k+1} \right)\left\{ \text{2k+10+k+2} \right\}$ 

$\text{=3m+}\left( \text{k+1} \right)\left\{ \text{3k+12} \right\}$ 

$\text{=3m+3}\left( \text{k+1} \right)\left\{ \text{k+4} \right\}$ 

$\text{=3}\left\{ \text{m+}\left( \text{k+1} \right)\left( \text{k+4} \right) \right\}\text{=3 }\!\!\times\!\!\text{ q}$, where $\text{q=}\left\{ \text{m+}\left( \text{k+1} \right)\left( \text{k+4} \right) \right\}$ is some natural number.

Hence, $\left( \text{k+1} \right)\left\{ \left( \text{k+1} \right)\text{+1} \right\}\left\{ \left( \text{k+1} \right)\text{+5} \right\}$ is a multiple of $\text{3}$.

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

20. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{1}{{\text{0}}^{\text{2n-1}}}\text{+1}$ is divisible by $\text{11}$ 

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right)\text{:1}{{\text{0}}^{\text{2n-1}}}\text{+1}$ is divisible by $\text{11}$.

For $\text{n=1}$,

$\text{P}\left( 1 \right)\text{=1}{{\text{0}}^{\text{2n-1}}}\text{+1=11}$ and $\text{P}\left( 1 \right)$ is divisible by $\text{11}$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

i.e., $\text{1}{{\text{0}}^{\text{2k-1}}}\text{+1}$ is divisible by $\text{11}$.

$\therefore \text{1}{{\text{0}}^{\text{2k-1}}}\text{+1=11m}$, where $\text{m}\in \text{N}$…(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

$\text{1}{{\text{0}}^{\text{2}\left( \text{k+1} \right)\text{-1}}}\text{+1}$ 

$\text{=1}{{\text{0}}^{\text{2k+2-1}}}\text{+1}$ 

$\text{=1}{{\text{0}}^{\text{2k+1}}}\text{+1}$ 

$\text{=1}{{\text{0}}^{\text{2}}}\left( \text{1}{{\text{0}}^{\text{2k-1}}}\text{+1-1} \right)\text{+1}$ 

$\text{=1}{{\text{0}}^{\text{2}}}\left( \text{1}{{\text{0}}^{\text{2k-1}}}\text{+1} \right)\text{-1}{{\text{0}}^{\text{2}}}\text{+1}$

$\text{=1}{{\text{0}}^{\text{2}}}\text{.11m-100+1}$              [Using (i)]

$\text{=100 }\!\!\times\!\!\text{ 11m-99}$ 

$\text{=11}\left( \text{100m-9} \right)$ 

$\text{=11r}$, where $\text{r=}\left( \text{100m-9} \right)$ is some natural number

Therefore, $\text{1}{{\text{0}}^{\text{2}\left( \text{k+1} \right)\text{-1}}}\text{+1}$ is divisible by $\text{11}$.

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

21. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

${{\text{x}}^{\text{2n}}}\text{-}{{\text{y}}^{\text{2n}}}$ is divisible by $\text{x+y}$.

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right)\text{:}{{\text{x}}^{\text{2n}}}\text{-}{{\text{y}}^{\text{2n}}}$ is divisible by $\text{x+y}$.

For $\text{n=1}$,

$\text{P}\left( 1 \right)\text{=}{{\text{x}}^{\text{2 }\!\!\times\!\!\text{ 1}}}\text{-}{{\text{y}}^{\text{2 }\!\!\times\!\!\text{ 1}}}\text{=}{{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2}}}\text{=}\left( \text{x+y} \right)\left( \text{x-y} \right)$, which is clearly divisible by $\text{x+y}$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

${{\text{x}}^{\text{2k}}}\text{-}{{\text{y}}^{\text{2k}}}$ is divisible by $\text{x+y}$.

$\therefore $ Let ${{\text{x}}^{\text{2k}}}\text{-}{{\text{y}}^{\text{2k}}}\text{=m}\left( \text{x+y} \right)$, where $\text{m}\in \text{N}$…(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

\[{{\text{x}}^{\text{2}\left( \text{k+1} \right)\text{-}{{\text{y}}^{\text{2}\left( \text{k+1} \right)}}}}\] 

$\text{=}{{\text{x}}^{\text{2k}}}\text{.}{{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2k}}}\text{.}{{\text{y}}^{\text{2}}}$ 

$\text{=}{{\text{x}}^{\text{2}}}\left( {{\text{x}}^{\text{2k}}}\text{-}{{\text{y}}^{\text{2k}}}\text{+}{{\text{y}}^{\text{2k}}} \right)\text{-}{{\text{y}}^{\text{2k}}}\text{.}{{\text{y}}^{\text{2}}}$ 

\[\text{=}{{\text{x}}^{\text{2}}}\left\{ \text{m}\left( \text{x+y} \right)\text{+}{{\text{y}}^{\text{2k}}} \right\}\text{-}{{\text{y}}^{\text{2k}}}\text{.}{{\text{y}}^{\text{2}}}\] 

\[\text{=m}\left( \text{x+y} \right){{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2k}}}\text{.}{{\text{x}}^{\text{2}}}\text{-}{{\text{y}}^{\text{2k}}}\text{.}{{\text{y}}^{\text{2}}}\] 

\[\text{=m}\left( \text{x+y} \right){{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2k}}}\left( {{\text{x}}^{2}}\text{-}{{\text{y}}^{2}} \right)\] 

\[\text{=m}\left( \text{x+y} \right){{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2k}}}\left( \text{x+y} \right)\left( \text{x-y} \right)\] 

$\text{=}\left( \text{x+y} \right)\left\{ \text{m}{{\text{x}}^{\text{2}}}\text{+}{{\text{y}}^{\text{2k}}}\left( \text{x-y} \right) \right\}$, which is a factor of $\left( \text{x+y} \right)$.

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

22. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

${{\text{3}}^{\text{2n+2}}}\text{-8n-9}$ is divisible by $\text{8}$. 

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right)\text{:}{{\text{3}}^{\text{2n+2}}}\text{-8n-9}$ is divisible by $\text{8}$.

For $\text{n=1}$,

$\text{P}\left( \text{n} \right)={{\text{3}}^{\text{2 }\!\!\times\!\!\text{ 1+2}}}\text{-8 }\!\!\times\!\!\text{ 1-9=64}$, which is divisible by $\text{8}$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

${{\text{3}}^{\text{2k+2}}}\text{-8k-9}$ is divisible by $\text{8}$.

$\therefore {{\text{3}}^{\text{2k+2}}}\text{-8k-9=8m}$; where $\text{m}\in \text{N}$…(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

${{\text{3}}^{\text{2}\left( \text{k+1} \right)\text{+2}}}\text{-8}\left( \text{k+1} \right)\text{-9}$ 

${{\text{3}}^{\text{2k+2}}}\text{.}{{\text{3}}^{\text{2}}}\text{-8k-8-9}$ 

$\text{=}{{\text{3}}^{\text{2}}}\left( {{\text{3}}^{\text{2k+2}}}\text{-8k-9+8k+9} \right)\text{-8k-17}$ 

$\text{=}{{\text{3}}^{\text{2}}}\left( {{\text{3}}^{\text{2k+2}}}\text{-8k-9} \right)\text{+}{{\text{3}}^{\text{2}}}\left( \text{8k+9} \right)\text{-8k-17}$ 

$\text{=9}\text{.8m+9}\left( \text{8k+9} \right)\text{-8k-17}$ 

$\text{=9}\text{.8m+72k+81-8k-17}$ 

$\text{=9}\text{.8m+64k+64}$ 

$\text{=8}\left( \text{9m+8k+8} \right)$ 

$\text{=8r}$, where $\text{r=}\left( \text{9m+8k+8} \right)$ is a natural number

Therefore, ${{\text{3}}^{\text{2}\left( \text{k+1} \right)\text{+2}}}\text{-8}\left( \text{k+1} \right)\text{-9}$ is divisible by $\text{8}$.

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

23. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\text{4}{{\text{1}}^{\text{n}}}\text{-1}{{\text{4}}^{\text{n}}}$ is a multiple of $\text{27}$.

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right)\text{:4}{{\text{1}}^{\text{n}}}\text{-1}{{\text{4}}^{\text{n}}}$ is a multiple of $27$.

It can be observed that $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$

For $\text{n=1}$,

$\text{P}\left( 1 \right)={{41}^{1}}-{{14}^{1}}=27$, which is a multiple of $27$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

$\text{4}{{\text{1}}^{\text{k}}}\text{-1}{{\text{4}}^{\text{k}}}$ is a multiple of $27$.

$\therefore \text{4}{{\text{1}}^{\text{k}}}\text{-1}{{\text{4}}^{\text{k}}}\text{=27m,}\,\,\,\text{m}\in \text{N}$ …(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

$\text{4}{{\text{1}}^{\text{k+1}}}\text{-1}{{\text{4}}^{\text{k+1}}}$ 

$\text{=4}{{\text{1}}^{\text{k}}}\text{.41-1}{{\text{4}}^{\text{k}}}\text{.14}$ 

$\text{=41}\left( \text{4}{{\text{1}}^{\text{k}}}\text{-1}{{\text{4}}^{\text{k}}}\text{+1}{{\text{4}}^{\text{k}}} \right)\text{-1}{{\text{4}}^{\text{k}}}\text{.14}$ 

$\text{=41}\text{.27m+1}{{\text{4}}^{\text{k}}}\left( \text{41-14} \right)$ 

$\text{=41}\text{.27m+27}\text{.1}{{\text{4}}^{\text{k}}}$ 

$\text{=27}\left( \text{41m-1}{{\text{4}}^{\text{k}}} \right)$ 

$\text{=27 }\!\!\times\!\!\text{ r}$, where $\text{r=}\left( \text{41m-1}{{\text{4}}^{\text{k}}} \right)$ is a natural number.

Therefore, $\text{4}{{\text{1}}^{\text{k+1}}}\text{-1}{{\text{4}}^{\text{k+1}}}$ is a multiple of $27$.

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

24. Prove that following by using the principle of mathematical induction for all $\text{n}\in \text{N}$:

$\left( \text{2n+7} \right)\text{}{{\left( \text{n+3} \right)}^{\text{2}}}$ 

Ans: Let us denote the given statement by $\text{P}\left( \text{n} \right)$, i.e.,

$\text{P}\left( \text{n} \right)\text{:}\left( \text{2n+7} \right)\text{}{{\left( \text{n+3} \right)}^{\text{2}}}$ 

For $\text{n=1}$,

$\text{P}\left( 1 \right)\text{=2}\text{.1+7=9}{{\left( \text{1+3} \right)}^{\text{2}}}\text{=16}$, which is true because $\text{916}$.

Therefore, $\text{P}\left( \text{n} \right)$ is true for $\text{n=1}$.

Let us assume that $\text{P}\left( \text{k} \right)$ is true for some natural number $\text{k}$, i.e.,

$\left( \text{2k+7} \right)\text{}{{\left( \text{k+3} \right)}^{\text{2}}}$ …(i)

Now, we have to prove that $\text{P}\left( \text{k+1} \right)$ is also true whenever $\text{P}\left( \text{k} \right)$ is true.

Consider

$\left\{ \text{2}\left( \text{k+1} \right)\text{+7} \right\}\text{=}\left( \text{2k+7} \right)\text{+2}$ 

$\therefore \left\{ \text{2}\left( \text{k+1} \right)\text{+7} \right\}\text{=}\left( \text{2k+7} \right)\text{+2}{{\left( \text{k+3} \right)}^{\text{2}}}\text{+2}$      [Using (i)]

$\text{2}\left( \text{k+1} \right)\text{+7}{{\text{k}}^{\text{2}}}\text{+6k+9+2}$ 

$\text{2}\left( \text{k+1} \right)\text{+7}{{\text{k}}^{\text{2}}}\text{+6k+11}$ 

Now, ${{\text{k}}^{\text{2}}}\text{+6k+11}{{\text{k}}^{\text{2}}}\text{+8k+16}$ 

$\therefore \text{2}\left( \text{k+1} \right)\text{+7}{{\left( \text{k+4} \right)}^{\text{2}}}$ 

$\text{2}\left( \text{k+1} \right)\text{+7}{{\left\{ \left( \text{k+1} \right)\text{+3} \right\}}^{\text{2}}}$ 

Therefore, $\text{P}\left( \text{k+1} \right)$ holds whenever $\text{P}\left( \text{k} \right)$ holds.

Hence, the given equality is true for all natural numbers i.e., $\text{N}$ by the principle of mathematical induction.

Chapter 4 Principle of Mathematical Induction NCERT Solutions

CBSE Class 11 Mathematics spans over a very vast syllabus and covers some very crucial topics that you may encounter in your entrance exams. Among them, the Principle of Mathematical Induction Class 11 can come across as a fairly difficult chapter for many students. However, it can be a scoring topic if the fundamental concepts are understood in detail by students.

Principle of Mathematical Induction Class 11 NCERT Solutions has been framed by teachers who understand the importance of step-by-step explanations for the maths questions based on the application of Mathematical Induction. Students can opt for NCERT Solutions for Class 11 Maths Chapter 4 PDF Download for seamless offline studying.

NCERT Solutions for Class 11 Maths Chapters

 

NCERT Solution Class 11 Maths of Chapter 4 Exercise

Chapter 4 - Mathematical Induction Exercises in PDF Format

Exercise 4.1

24 Questions & Solutions


NCERT Solutions for Class 11 Maths Chapter 4 Sub-topics

A brief summary of the topics and sub-topics covered in the chapter of Mathematical Induction Class 11 is given below.

Part 1: Introduction

The first part of the chapter imparts a basic idea of deductive reasoning. Questions from this section consist of two or more sentences stating an argument or a logical question that students will need to prove as true or false with the help of derived deductive steps.

In order to gain a clearer understanding of the theorems involved in deriving deductive statements, you can refer to NCERT Solutions for Class 11 Maths Chapter 4 PDF. You will find a detailed breakdown of the application of principles that will help you to solve the sums given in this chapter.

Part 2: Motivation

In this section, students will learn about an important concept that they need to understand before solving the sums of Mathematical Induction. In Mathematical Induction Class 11 Solutions, the principle of Motivation involves the process of proving that if a given statement is true for one natural number, then it also holds true for the rest of n natural numbers. This lays the base for the first principle of Mathematical Induction. Hence it is very important that you develop a strong grip on this topic in order to solve related sums.

Part 3: Illustration

The next section teaches students about the process of deriving an equation. However, this is an area where many students struggle to make use of the right logic to prove the given statements. At this time, the Principle of Mathematical Induction NCERT Solutions comes in handy to help students find the correct method of proceeding with deducting statements for equations.

Part 4: The Principle of Mathematical Induction

To round up, the final drill in the chapter these NCERT Solutions will guide you through understanding the principle of Mathematical Induction with the help of the previously discussed concepts. You will, thus, be required to solve equations based on applications of the same.

For better guidance and thorough understanding, the Principle of Mathematical Induction Class 11 Solutions PDF comes with detailed explanations to help students fathom the questions correctly, and then proceeds with the step-wise solutions, which have again been broken down with explanatory notes.

How can you benefit from the Principle of Mathematical Induction Class 11 Solutions?

Chapter 4 Maths Class 11 might come off as a remarkably complex chapter but not for those who address and clear their troubles with the basics first. For that, a thorough acquaintance with the prescribed textbooks is undoubtedly very important. What can help additionally are PMI Class 11 NCERT Solutions as it can guide you through key concepts with smart problem-solving techniques and elaborate answers to help you self-study and practice the sums.

FAQs on NCERT Solutions for Class 11 Maths Chapter 4 - Principle Of Mathematical Induction

1. What is Mathematical Induction?

Mathematical Induction is a method of confirming statements to prove formula, statement or theorem holds true for each and every natural number.


There are two basic steps involved in proving a statement.

Base step

Step 1: At first, you will have to prove that a given statement P(n) is true for the initial value of n=1.

Inductive step

This is broken into the next two steps.


Step 2: Suppose that statement P(n) is true for an assumed value of n=k as well, provided k is a positive integer.


Step 3: Now use the previous assumption to prove that the given statement holds true for n=k+1, where k is any positive integer.


Satisfying all conditions, derive the conclusion that it is hence proved, statement P(n) is true for all natural numbers.

2. What is the first principle of Mathematical Induction?

The first principle of Mathematical Induction points that when a base step and the inductive step are established as true, it can be concluded that the initial statement P(n) is true for all natural numbers.


You can find ample problems based on this principle and their solutions in Mathematical Induction Class 11 NCERT Solutions.

3. What can you learn from NCERT Solutions for Class 11 Maths Chapter 4?

Class 11 Maths NCERT Solutions Chapter 4 provide a detailed guide on the deduction and induction techniques used to prove statements and equations. Students will also get an in-depth knowledge of the Principle of Mathematical Induction and its applications through solving multiple exercises covering sums on the topic. 


The solutions also come with probable questions and answers, formulated with extensive research by our subject-matter experts. Going through these solutions will prepare students for any question that they might encounter in exams. For last-minute revision and practice, you can opt for NCERT Class 11 Maths Chapter 4 Solutions Download in PDF format from Vedantu.

4. How do you use the principle of Mathematical Induction?

Mathematical Induction is a tool used to check the validity of any given formula, theorem, or statement for a given natural number “n”. First, we check the validity for first term, i.e. P(1). If this holds true, then we assume it holds its validity for the next integer and so on. Hence, checking the individual validity for each integer is not required. Validation for a specific case proves the statement for the entire general case.

5. Is Mathematical Induction tough in Class 11?

The establishment of the inductive step is at the heart of deduction in the proof. This might be one of the reasons why Mathematical Induction is so difficult for students. The statement to be proven is frequently algebraic and hence difficult to visualise. This is especially true when it comes to trigonometric or algebraic phrases. Hence it is important to grasp the concepts well and practice hard for the exams.

6. What is the concept of Mathematical Induction explained in Chapter 4 of NCERT Solutions for Class 11 Maths?

Mathematical Induction is a technique to first validate any given statement or theorem for a specific case and then arrive at an assumption or conclusion that it holds true for the given general case for the given natural numbers. It acts as a domino effect where, if it is proven that the statement holds true for k=1, then it will hold true for all other given natural numbers. 

7. Where can I get the NCERT Solution for Class 11 Maths Chapter 4?

You can easily find the solutions on the website of Vedantu free of cost. To download, follow the steps mentioned below:

  • Visit the page-NCERT Solutions for Class 11 Maths Chapter 4.

  • A website will open from where you can choose chapter 4 to download Solutions for Class 11 Maths Chapter 4.

  • Click on Download PDF to download the PDF version of the solutions of NCERT Class 11 Maths.

If you need more help to understand the concepts better, the same is available on the Vedantu website and app.

8. What is the use of Mathematical Induction in real-life Class 11?

This extension, known as structural induction, is used in mathematical logic and computer science to prove claims about more generic well-founded structures, such as trees. The well-ordering concept is logically analogous to the validity of mathematical induction.


Hence, as all the questions cover diverse themes and concepts, it is critical to practise and solve them all. Visit the Vedantu site, if you require additional assistance regarding these concepts as well as modules for practice.