
With an increase in temperature, the angle of contact:
(A) Decrease
(B) Increase
(C) remains constant
(D) sometimes increases and sometimes decrease
Answer
229.2k+ views
Hint The angle of contact, as shown in the figure is the angle $\theta $, which is formed with the water meniscus and the tube surface. As temperature increases, the surface tension of the liquid decreases and vice versa.
Complete Step by step solution On the increasing temperature, adhesion increases and cohesive forces decrease. The increase in temperature also causes the surface tension to decrease due to more molecular vibrations among the liquid molecules. The rise in temperature of the liquid causes an increase in the adhesive forces between the tube and the liquid molecules. Similarly, on an increase in temperature, the cohesive forces between the liquid molecules decrease. This causes the surface tension to decrease and the angle of contact to increase as shown below.
The surface tension $S$ and the angle of contact $\theta $ are related as, $\frac{{2S}}{{r\cos \theta }} = \rho gh$.
In this equation, for the L.H.S. to remain constant, as $S$ decreases with a temperature rise in temperature, $\cos \theta $ should also decrease. Thus, the angle $\theta $ should increase.
The angle of contact $\theta $, and the absolute temperature $T$, are thus related as $\theta \propto T$.
In the case of the above solution, we ignore the changes (if any), in the height and density of the liquid with respect to changes in temperature.

Therefore, the correct answer is an option (B).
Note Highly soluble impurities increase surface tension since adhesive forces between liquid and impurity molecules increase because of stronger intermolecular forces of attraction. The sparingly soluble impurities decrease the surface tension since the adhesive forces between the liquid molecule and the impurity molecule become less than the cohesive forces among the liquid molecules.
Complete Step by step solution On the increasing temperature, adhesion increases and cohesive forces decrease. The increase in temperature also causes the surface tension to decrease due to more molecular vibrations among the liquid molecules. The rise in temperature of the liquid causes an increase in the adhesive forces between the tube and the liquid molecules. Similarly, on an increase in temperature, the cohesive forces between the liquid molecules decrease. This causes the surface tension to decrease and the angle of contact to increase as shown below.
The surface tension $S$ and the angle of contact $\theta $ are related as, $\frac{{2S}}{{r\cos \theta }} = \rho gh$.
In this equation, for the L.H.S. to remain constant, as $S$ decreases with a temperature rise in temperature, $\cos \theta $ should also decrease. Thus, the angle $\theta $ should increase.
The angle of contact $\theta $, and the absolute temperature $T$, are thus related as $\theta \propto T$.
In the case of the above solution, we ignore the changes (if any), in the height and density of the liquid with respect to changes in temperature.

Therefore, the correct answer is an option (B).
Note Highly soluble impurities increase surface tension since adhesive forces between liquid and impurity molecules increase because of stronger intermolecular forces of attraction. The sparingly soluble impurities decrease the surface tension since the adhesive forces between the liquid molecule and the impurity molecule become less than the cohesive forces among the liquid molecules.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

