
Which of the following is correct?
1. $n\left( {S \cup T} \right)$ is maximum when $n\left( {S \cap T} \right)$ is minimum.
2. If $n\left( U \right) = 1000$, $n\left( S \right) = 720$, $n\left( T \right) = 450$, then the last value of $n\left( {S \cap T} \right) = 170$.
A. Only 1 is true
B. Only 2 is true
C. Both 1 and 2 are true
D. Both 1 and 2 are false
Answer
219k+ views
Hint: We will use the formula cardinal numbers of the union of sets to check statement 1. As we know, $U$ denotes the universal set and $S \cup T$ is a subset of $U$. So, the cardinal of the union of two sets is less than the cardinal of the universal set. Then by using the formula cardinal numbers of the union of sets, we will calculate $n\left( {S \cap T} \right)$ and check the second statement.
Formula Used:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step by step solution:
We know that, $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
For $S$ and $T$ we can say, $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$.
Let $n\left( {S \cap T} \right) \ge x$.
Then $n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right)$.
$n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right) \ge x$
$ - n\left( {S \cup T} \right) \ge x - n\left( S \right) - n\left( T \right)$
$n\left( {S \cup T} \right) \le - x + n\left( S \right) + n\left( T \right)$
So, the least value of $n\left( {S \cap T} \right)$ we get the maximum value of $n\left( {S \cup T} \right)$.
Hence statement 1 is correct.
Now we will put the values of $n\left( S \right) = 720$, $n\left( T \right) = 450$ in the $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$
$n\left( {S \cup T} \right) = 720 + 450 - n\left( {S \cap T} \right)$
Since $S \cup T$ is a subset of $U$. So, $n\left( {S \cup T} \right) \le n\left( U \right)$.
Putting $720 + 450 - n\left( {S \cap T} \right)$ in place $n\left( {S \cup T} \right)$ and $n\left( U \right) = 1000$ in the inequality $n\left( {S \cup T} \right) \le n\left( U \right)$.
$720 + 450 - n\left( {S \cap T} \right) \le 1000$
Solve the above inequality
$1170 - n\left( {S \cap T} \right) \le 1000$
Subtract $1170$ from both sides
$ \Rightarrow 1170 - n\left( {S \cap T} \right) - 1170 \le 1000 - 1170$
$ \Rightarrow - n\left( {S \cap T} \right) \le - 170$
Multiply both sides by -1 and change the direction of the inequality
$ \Rightarrow n\left( {S \cap T} \right) \ge 170$
So, the least value of $n\left( {S \cap T} \right)$ is 170.
Thus statement 2 is correct.
Option ‘C’ is correct
Note: The formula of the cardinal of the union of two sets will help to check statement 1. By using the formula we get the maximum value of $n\left( {S \cup T} \right)$ .
Remember the cardinal of the union of two sets must be less than or equal to the cardinal of the universal set.
Using the formula $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$ and $n\left( {S \cup T} \right) \le n\left( U \right)$ , we check statement 2.
Formula Used:
$n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$
Complete step by step solution:
We know that, $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$.
For $S$ and $T$ we can say, $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$.
Let $n\left( {S \cap T} \right) \ge x$.
Then $n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right)$.
$n\left( {S \cap T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cup T} \right) \ge x$
$ - n\left( {S \cup T} \right) \ge x - n\left( S \right) - n\left( T \right)$
$n\left( {S \cup T} \right) \le - x + n\left( S \right) + n\left( T \right)$
So, the least value of $n\left( {S \cap T} \right)$ we get the maximum value of $n\left( {S \cup T} \right)$.
Hence statement 1 is correct.
Now we will put the values of $n\left( S \right) = 720$, $n\left( T \right) = 450$ in the $n\left( {S \cup T} \right) = n\left( S \right) + n\left( T \right) - n\left( {S \cap T} \right)$
$n\left( {S \cup T} \right) = 720 + 450 - n\left( {S \cap T} \right)$
Since $S \cup T$ is a subset of $U$. So, $n\left( {S \cup T} \right) \le n\left( U \right)$.
Putting $720 + 450 - n\left( {S \cap T} \right)$ in place $n\left( {S \cup T} \right)$ and $n\left( U \right) = 1000$ in the inequality $n\left( {S \cup T} \right) \le n\left( U \right)$.
$720 + 450 - n\left( {S \cap T} \right) \le 1000$
Solve the above inequality
$1170 - n\left( {S \cap T} \right) \le 1000$
Subtract $1170$ from both sides
$ \Rightarrow 1170 - n\left( {S \cap T} \right) - 1170 \le 1000 - 1170$
$ \Rightarrow - n\left( {S \cap T} \right) \le - 170$
Multiply both sides by -1 and change the direction of the inequality
$ \Rightarrow n\left( {S \cap T} \right) \ge 170$
So, the least value of $n\left( {S \cap T} \right)$ is 170.
Thus statement 2 is correct.
Option ‘C’ is correct
Note: The formula of the cardinal of the union of two sets will help to check statement 1. By using the formula we get the maximum value of $n\left( {S \cup T} \right)$ .
Remember the cardinal of the union of two sets must be less than or equal to the cardinal of the universal set.
Using the formula $n\left( {A \cup B} \right) = n\left( A \right) + n\left( B \right) - n\left( {A \cap B} \right)$ and $n\left( {S \cup T} \right) \le n\left( U \right)$ , we check statement 2.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

