
Value of $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$ is equal to
A . $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
B . $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$
C . $\dfrac{3}{15}$
D . None of these
Answer
164.1k+ views
Hint: Given expression is $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$. We see from the expression that it in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and $\sin B\sin ({{60}^{\circ }}+B)$. Then by using the identities and simplifying the expression we get the value of the given expression. Then we solve the options to match the value with the value of given expression and choose the correct option.
Formula Used:
We use the following trigonometric identity to solve the question:
$\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
And $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Complete Step- by- step Solution:
We have given that $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$
Rearranging the above equation as follow:-
$\sin {{12}^{\circ }}\sin {{48}^{\circ }}\sin {{24}^{\circ }}\sin {{84}^{\circ }}$
Now we will see that the first expression in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and the other is in the form of $\sin B\sin ({{60}^{\circ }}+B)$
Where $A={{12}^{\circ }}$and $B={{24}^{\circ }}$
Now we write the above expression as
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$………………………………. (1)
We know the identity $\sin A\sin ({{60}^{\circ }}-A)\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\sin 3A$
We can write it as $\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
Now we will use the above identity in equation (1), we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\dfrac{\sin 3({{12}^{\circ }})}{\sin ({{60}^{\circ }}+{{12}^{\circ }})}\dfrac{1}{4}\dfrac{\sin 3({{24}^{\circ }})}{\sin ({{60}^{\circ }}-{{24}^{\circ }})}$
Now we solve the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$= $\dfrac{1}{4}\dfrac{\sin ({{36}^{\circ }})}{\sin ({{72}^{\circ }})}\dfrac{1}{4}\dfrac{\sin ({{72}^{\circ }})}{\sin ({{36}^{\circ }})}$
On solving the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\times \dfrac{1}{4}$= $\dfrac{1}{16}$
Now we will solve the options to find out which value matches the value of our equation:-
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$
Let ${{20}^{\circ }}=\theta $, then ${{40}^{\circ }}=2\theta \,\And \,{{80}^{\circ }}=4\theta $
Then $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$= $\dfrac{1}{2}(\cos \theta \cos 2\theta \cos 4\theta )$
We know $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin {{2}^{3}}\theta }{{{2}^{3}}\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin 8\theta }{8\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin {{160}^{\circ }}}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{180}^{\circ }}-{{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}$
Hence we see that value of option(1) matches the value of given equation.
Thus, Option (A) is correct.
Note: We know many trigonometric identities are related to many trigonometric equations. Remember that sine and tangent are odd functions as both functions are symmetric about the origin. Cosine is an even function since the function is symmetric about the y- axis.
Formula Used:
We use the following trigonometric identity to solve the question:
$\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
And $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Complete Step- by- step Solution:
We have given that $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$
Rearranging the above equation as follow:-
$\sin {{12}^{\circ }}\sin {{48}^{\circ }}\sin {{24}^{\circ }}\sin {{84}^{\circ }}$
Now we will see that the first expression in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and the other is in the form of $\sin B\sin ({{60}^{\circ }}+B)$
Where $A={{12}^{\circ }}$and $B={{24}^{\circ }}$
Now we write the above expression as
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$………………………………. (1)
We know the identity $\sin A\sin ({{60}^{\circ }}-A)\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\sin 3A$
We can write it as $\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
Now we will use the above identity in equation (1), we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\dfrac{\sin 3({{12}^{\circ }})}{\sin ({{60}^{\circ }}+{{12}^{\circ }})}\dfrac{1}{4}\dfrac{\sin 3({{24}^{\circ }})}{\sin ({{60}^{\circ }}-{{24}^{\circ }})}$
Now we solve the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$= $\dfrac{1}{4}\dfrac{\sin ({{36}^{\circ }})}{\sin ({{72}^{\circ }})}\dfrac{1}{4}\dfrac{\sin ({{72}^{\circ }})}{\sin ({{36}^{\circ }})}$
On solving the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\times \dfrac{1}{4}$= $\dfrac{1}{16}$
Now we will solve the options to find out which value matches the value of our equation:-
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$
Let ${{20}^{\circ }}=\theta $, then ${{40}^{\circ }}=2\theta \,\And \,{{80}^{\circ }}=4\theta $
Then $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$= $\dfrac{1}{2}(\cos \theta \cos 2\theta \cos 4\theta )$
We know $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin {{2}^{3}}\theta }{{{2}^{3}}\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin 8\theta }{8\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin {{160}^{\circ }}}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{180}^{\circ }}-{{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}$
Hence we see that value of option(1) matches the value of given equation.
Thus, Option (A) is correct.
Note: We know many trigonometric identities are related to many trigonometric equations. Remember that sine and tangent are odd functions as both functions are symmetric about the origin. Cosine is an even function since the function is symmetric about the y- axis.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
