
Value of $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$ is equal to
A . $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
B . $\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}$
C . $\dfrac{3}{15}$
D . None of these
Answer
220.8k+ views
Hint: Given expression is $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$. We see from the expression that it in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and $\sin B\sin ({{60}^{\circ }}+B)$. Then by using the identities and simplifying the expression we get the value of the given expression. Then we solve the options to match the value with the value of given expression and choose the correct option.
Formula Used:
We use the following trigonometric identity to solve the question:
$\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
And $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Complete Step- by- step Solution:
We have given that $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$
Rearranging the above equation as follow:-
$\sin {{12}^{\circ }}\sin {{48}^{\circ }}\sin {{24}^{\circ }}\sin {{84}^{\circ }}$
Now we will see that the first expression in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and the other is in the form of $\sin B\sin ({{60}^{\circ }}+B)$
Where $A={{12}^{\circ }}$and $B={{24}^{\circ }}$
Now we write the above expression as
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$………………………………. (1)
We know the identity $\sin A\sin ({{60}^{\circ }}-A)\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\sin 3A$
We can write it as $\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
Now we will use the above identity in equation (1), we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\dfrac{\sin 3({{12}^{\circ }})}{\sin ({{60}^{\circ }}+{{12}^{\circ }})}\dfrac{1}{4}\dfrac{\sin 3({{24}^{\circ }})}{\sin ({{60}^{\circ }}-{{24}^{\circ }})}$
Now we solve the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$= $\dfrac{1}{4}\dfrac{\sin ({{36}^{\circ }})}{\sin ({{72}^{\circ }})}\dfrac{1}{4}\dfrac{\sin ({{72}^{\circ }})}{\sin ({{36}^{\circ }})}$
On solving the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\times \dfrac{1}{4}$= $\dfrac{1}{16}$
Now we will solve the options to find out which value matches the value of our equation:-
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$
Let ${{20}^{\circ }}=\theta $, then ${{40}^{\circ }}=2\theta \,\And \,{{80}^{\circ }}=4\theta $
Then $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$= $\dfrac{1}{2}(\cos \theta \cos 2\theta \cos 4\theta )$
We know $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin {{2}^{3}}\theta }{{{2}^{3}}\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin 8\theta }{8\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin {{160}^{\circ }}}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{180}^{\circ }}-{{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}$
Hence we see that value of option(1) matches the value of given equation.
Thus, Option (A) is correct.
Note: We know many trigonometric identities are related to many trigonometric equations. Remember that sine and tangent are odd functions as both functions are symmetric about the origin. Cosine is an even function since the function is symmetric about the y- axis.
Formula Used:
We use the following trigonometric identity to solve the question:
$\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
And $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Complete Step- by- step Solution:
We have given that $\sin {{12}^{\circ }}\sin {{24}^{\circ }}\sin {{48}^{\circ }}\sin {{84}^{\circ }}$
Rearranging the above equation as follow:-
$\sin {{12}^{\circ }}\sin {{48}^{\circ }}\sin {{24}^{\circ }}\sin {{84}^{\circ }}$
Now we will see that the first expression in the form of $\sin A\sin ({{60}^{\circ }}-A)$ and the other is in the form of $\sin B\sin ({{60}^{\circ }}+B)$
Where $A={{12}^{\circ }}$and $B={{24}^{\circ }}$
Now we write the above expression as
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$………………………………. (1)
We know the identity $\sin A\sin ({{60}^{\circ }}-A)\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\sin 3A$
We can write it as $\sin A\sin ({{60}^{\circ }}+A)=\dfrac{1}{4}\dfrac{\sin 3A}{\sin ({{60}^{\circ }}-A)}$
Now we will use the above identity in equation (1), we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\dfrac{\sin 3({{12}^{\circ }})}{\sin ({{60}^{\circ }}+{{12}^{\circ }})}\dfrac{1}{4}\dfrac{\sin 3({{24}^{\circ }})}{\sin ({{60}^{\circ }}-{{24}^{\circ }})}$
Now we solve the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$= $\dfrac{1}{4}\dfrac{\sin ({{36}^{\circ }})}{\sin ({{72}^{\circ }})}\dfrac{1}{4}\dfrac{\sin ({{72}^{\circ }})}{\sin ({{36}^{\circ }})}$
On solving the above equation, we get
$\sin {{12}^{\circ }}\sin ({{60}^{\circ }}-{{12}^{\circ }})\sin {{24}^{\circ }}\sin ({{60}^{\circ }}+{{24}^{\circ }})$ = $\dfrac{1}{4}\times \dfrac{1}{4}$= $\dfrac{1}{16}$
Now we will solve the options to find out which value matches the value of our equation:-
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$
Let ${{20}^{\circ }}=\theta $, then ${{40}^{\circ }}=2\theta \,\And \,{{80}^{\circ }}=4\theta $
Then $\dfrac{1}{2}(\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{80}^{\circ }})$= $\dfrac{1}{2}(\cos \theta \cos 2\theta \cos 4\theta )$
We know $\cos \theta \cos 2\theta \cos {{2}^{n-1}}\theta =\dfrac{\sin {{2}^{n}}\theta }{{{2}^{n}}\sin \theta }$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin {{2}^{3}}\theta }{{{2}^{3}}\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{2}\left( \dfrac{\sin 8\theta }{8\sin \theta } \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin {{160}^{\circ }}}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{180}^{\circ }}-{{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
$\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}\left( \dfrac{\sin ({{20}^{\circ }})}{\sin {{20}^{\circ }}} \right)$
Hence $\cos {{20}^{\circ }}\cos {{40}^{\circ }}\cos {{60}^{\circ }}\cos {{80}^{\circ }}$= $\dfrac{1}{16}$
Hence we see that value of option(1) matches the value of given equation.
Thus, Option (A) is correct.
Note: We know many trigonometric identities are related to many trigonometric equations. Remember that sine and tangent are odd functions as both functions are symmetric about the origin. Cosine is an even function since the function is symmetric about the y- axis.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

