
What is the value of $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$?
A. $\sqrt 2 $
B. $\sqrt 3 $
C. $2$
D. $4$
Answer
163.2k+ views
Hint: We know that $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ and $\cos 60 = \dfrac{1}{2}$so if we take LCM and divide and multiply by 2 in denominator and numerator ,we can get terms like $\sin A\cos B - \cos A\sin B$ where $A = 60$ and $B = 80$.From here we can simplify the fraction using some basic formula of trigonometry to get answer.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees
