
What is the value of $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$?
A. $\sqrt 2 $
B. $\sqrt 3 $
C. $2$
D. $4$
Answer
219.3k+ views
Hint: We know that $\sin 60 = \dfrac{{\sqrt 3 }}{2}$ and $\cos 60 = \dfrac{1}{2}$so if we take LCM and divide and multiply by 2 in denominator and numerator ,we can get terms like $\sin A\cos B - \cos A\sin B$ where $A = 60$ and $B = 80$.From here we can simplify the fraction using some basic formula of trigonometry to get answer.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Formula Used:
1.$\sin (A - B) = \sin A\cos B - \cos A\sin B$
2.$\sin 2A = 2\sin A\cos A$
3.$\sin (180 - \theta ) = \sin \theta $
Complete step by step solution:
Given -$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}}$
Taking LCM and simplifying the numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Multiplying and dividing by 2
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{2}{2}\dfrac{{\sin 80 - \sqrt 3 \cos 80}}{{\cos 80\sin 80}}$
Rearranging the terms of numerator and denominator
$\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = \dfrac{1}{2}\left( {\sin 80 - \sqrt 3 \cos 80} \right)*\dfrac{2}{{\sin 80\cos 80}}$
On simplifying the terms on RHS
RHS=$\left( {\dfrac{1}{2}\sin 80 - \dfrac{{\sqrt 3 }}{2}\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
RHS=$\left( {\cos 60\sin 80 - \sin 60\cos 80} \right)\dfrac{2}{{\sin 80\cos 80}}$
Using the formula $\sin (A - B) = \sin A\cos B - \cos A\sin B$
RHS=$\left( {\sin (80 - 60)} \right)\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\sin 20\dfrac{2}{{\sin 80\cos 80}}$
⇒RHS=$\dfrac{{2\sin 20}}{{\sin 80\cos 80}}$
We know that $\sin 2A = 2\sin A\cos A$
So $\sin A\cos A = \dfrac{{\sin 2A}}{2}$
Hence $\sin 80\cos 80 = \dfrac{{\sin 2 \times 80}}{2}$
$ \Rightarrow \sin 80\cos 80 = \dfrac{{\sin 160}}{2}$
Now RHS =$\sin 20 \times \dfrac{2}{{\dfrac{{\sin 160}}{2}}}$
$4\dfrac{{\sin 20}}{{\sin 180}}$⇒RHS =$4\dfrac{{\sin 20}}{{\sin 160}}$
We know that $\sin (180 - \theta ) = \sin \theta $,put $\theta = 20$in the identity
Then $\sin (180 - 20) = \sin 20$
$ \Rightarrow \sin 160 = \sin 20$
So RHS =4
∴ $\dfrac{1}{{\cos 80}} - \dfrac{{\sqrt 3 }}{{\sin 80}} = 4$
Option ‘D’ is correct
Note: In the questions involving complicated trigonometric values which are not known to us ,approach is try to manipulate the question by dividing both side of numerator and denominator by a suitable number or applying trigonometric formulas to convert them into a known value and then solve the problem.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

