
What is the value of a trigonometric equation \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\] ?
A. 2
B. 3
C. 1
D. 0
Answer
164.4k+ views
Hint: First, simplify the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\]. In the end, apply the trigonometric identities of complementary angles and simplify the equation to reach the required answer.
Formula used:
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\cot\left( {90^{\circ } - x} \right) = \tan x\]
Complete step by step solution:
The given trigonometric equation is \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\].
Let’s simplify the above equation.
Let \[v\] be the value of the given trigonometric equation.
Then,
\[v = \left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
Rewrite the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\].
\[v = \left( { \dfrac{{cot \left( {90^{\circ } - 36^{\circ }} \right)}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan \left( {90^{\circ } - 70^{\circ }} \right)}}{{\cot 70^{\circ }}}} \right)\]
Now apply the trigonometric identities of complementary angles \[\tan\left( {90^{\circ } - x} \right) = \cot x\] and \[\cot\left( {90^{\circ } - x} \right) = \tan x\].
\[v = \left( { \dfrac{{\tan 36^{\circ}}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\cot 70^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
\[ \Rightarrow \]\[v = 1 + 1\]
\[ \Rightarrow \]\[v = 2\]
Hence the correct option is A.
Note: Students often get confused about the concept of trigonometric identities of the complementary angles.
Any two angles are complementary if their sum is equal to \[90^{\circ}\]. So, the complement of any angle is the subtraction of the angle from \[90^{\circ}\].
Sine – Cosine, Tangent – Cotangent, and Secant – Cosecant are complementary angles of each other.
Following are the basic identities of the complementary angles in trigonometry:
\[\sin\left( {90^{\circ } - x} \right) = \cos x\]
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\sec\left( {90^{\circ } - x} \right) = \csc x\]
Formula used:
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\cot\left( {90^{\circ } - x} \right) = \tan x\]
Complete step by step solution:
The given trigonometric equation is \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\].
Let’s simplify the above equation.
Let \[v\] be the value of the given trigonometric equation.
Then,
\[v = \left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
Rewrite the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\].
\[v = \left( { \dfrac{{cot \left( {90^{\circ } - 36^{\circ }} \right)}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan \left( {90^{\circ } - 70^{\circ }} \right)}}{{\cot 70^{\circ }}}} \right)\]
Now apply the trigonometric identities of complementary angles \[\tan\left( {90^{\circ } - x} \right) = \cot x\] and \[\cot\left( {90^{\circ } - x} \right) = \tan x\].
\[v = \left( { \dfrac{{\tan 36^{\circ}}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\cot 70^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
\[ \Rightarrow \]\[v = 1 + 1\]
\[ \Rightarrow \]\[v = 2\]
Hence the correct option is A.
Note: Students often get confused about the concept of trigonometric identities of the complementary angles.
Any two angles are complementary if their sum is equal to \[90^{\circ}\]. So, the complement of any angle is the subtraction of the angle from \[90^{\circ}\].
Sine – Cosine, Tangent – Cotangent, and Secant – Cosecant are complementary angles of each other.
Following are the basic identities of the complementary angles in trigonometry:
\[\sin\left( {90^{\circ } - x} \right) = \cos x\]
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\sec\left( {90^{\circ } - x} \right) = \csc x\]
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
