
What is the value of a trigonometric equation \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\] ?
A. 2
B. 3
C. 1
D. 0
Answer
232.8k+ views
Hint: First, simplify the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\]. In the end, apply the trigonometric identities of complementary angles and simplify the equation to reach the required answer.
Formula used:
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\cot\left( {90^{\circ } - x} \right) = \tan x\]
Complete step by step solution:
The given trigonometric equation is \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\].
Let’s simplify the above equation.
Let \[v\] be the value of the given trigonometric equation.
Then,
\[v = \left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
Rewrite the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\].
\[v = \left( { \dfrac{{cot \left( {90^{\circ } - 36^{\circ }} \right)}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan \left( {90^{\circ } - 70^{\circ }} \right)}}{{\cot 70^{\circ }}}} \right)\]
Now apply the trigonometric identities of complementary angles \[\tan\left( {90^{\circ } - x} \right) = \cot x\] and \[\cot\left( {90^{\circ } - x} \right) = \tan x\].
\[v = \left( { \dfrac{{\tan 36^{\circ}}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\cot 70^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
\[ \Rightarrow \]\[v = 1 + 1\]
\[ \Rightarrow \]\[v = 2\]
Hence the correct option is A.
Note: Students often get confused about the concept of trigonometric identities of the complementary angles.
Any two angles are complementary if their sum is equal to \[90^{\circ}\]. So, the complement of any angle is the subtraction of the angle from \[90^{\circ}\].
Sine – Cosine, Tangent – Cotangent, and Secant – Cosecant are complementary angles of each other.
Following are the basic identities of the complementary angles in trigonometry:
\[\sin\left( {90^{\circ } - x} \right) = \cos x\]
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\sec\left( {90^{\circ } - x} \right) = \csc x\]
Formula used:
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\cot\left( {90^{\circ } - x} \right) = \tan x\]
Complete step by step solution:
The given trigonometric equation is \[\left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\].
Let’s simplify the above equation.
Let \[v\] be the value of the given trigonometric equation.
Then,
\[v = \left( { \dfrac{{\cot 54^{\circ }}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan 20^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
Rewrite the angles in the numerator of each term as a subtraction of an angle from \[90^{\circ }\].
\[v = \left( { \dfrac{{cot \left( {90^{\circ } - 36^{\circ }} \right)}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\tan \left( {90^{\circ } - 70^{\circ }} \right)}}{{\cot 70^{\circ }}}} \right)\]
Now apply the trigonometric identities of complementary angles \[\tan\left( {90^{\circ } - x} \right) = \cot x\] and \[\cot\left( {90^{\circ } - x} \right) = \tan x\].
\[v = \left( { \dfrac{{\tan 36^{\circ}}}{{\tan 36^{\circ }}}} \right) + \left( { \dfrac{{\cot 70^{\circ }}}{{\cot 70^{\circ }}}} \right)\]
\[ \Rightarrow \]\[v = 1 + 1\]
\[ \Rightarrow \]\[v = 2\]
Hence the correct option is A.
Note: Students often get confused about the concept of trigonometric identities of the complementary angles.
Any two angles are complementary if their sum is equal to \[90^{\circ}\]. So, the complement of any angle is the subtraction of the angle from \[90^{\circ}\].
Sine – Cosine, Tangent – Cotangent, and Secant – Cosecant are complementary angles of each other.
Following are the basic identities of the complementary angles in trigonometry:
\[\sin\left( {90^{\circ } - x} \right) = \cos x\]
\[\tan\left( {90^{\circ } - x} \right) = \cot x\]
\[\sec\left( {90^{\circ } - x} \right) = \csc x\]
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

