
When ultraviolet rays incident on metal plate then photoelectric effect does not occur, it occurs by incidence of : -
A. Infrared rays
B. X-rays
C. Radio wave
D. Light wave
Answer
163.5k+ views
Hint:The photoelectric effect occurs when the energy carried by the incident photons is greater than the work function of the metal plate. The energy of the photon is proportional to the frequency of the photon. So, by comparing the frequencies of the given ultraviolet rays, we can determine for which ray the photoelectric effect may occur.
Formula used:
\[E = h\nu \]
where h is the Plank’s constant and E is the energy of the photon with frequency equals to \[\nu \].
\[c = \nu \lambda \]
where c is the speed of light, \[\nu \] is the frequency of the photon and \[\lambda \] is the wavelength of the light wave.
Complete step by step solution:
As the energy of the photon is directly proportional to the frequency of the wave so the energy of the visible light is more than that of infrared photons.
\[E \propto \nu \]
As it is given that the photoelectric effect doesn’t occur when the metal surface is illuminated with ultraviolet rays. This means that the frequency of the ultraviolet is less than the threshold frequency of the photoelectric metal. So, to show the photoelectric effect we need ray with higher frequency than the ultraviolet rays.
Light spectrum is the combination of electromagnetic waves of many different wavelengths of energy produced by the light source. As the frequency of the electromagnetic wave is the most characteristic property, the spectrum is characterized based on the range of the frequencies.
The frequency of the X-rays is greater than the frequency of the ultraviolet rays. So, the energy of the photons of the X-rays is greater than that of ultraviolet rays. So, the photoelectric effect may occur when the photoelectric plate is incident with X-ray.
Therefore, the correct option is B.
Note: From the electromagnetic spectrum we can also compare the wavelengths of the rays to determine the rays which can cause the photoelectric effect. But the energy of the photon is inversely proportional to the wavelength.
Formula used:
\[E = h\nu \]
where h is the Plank’s constant and E is the energy of the photon with frequency equals to \[\nu \].
\[c = \nu \lambda \]
where c is the speed of light, \[\nu \] is the frequency of the photon and \[\lambda \] is the wavelength of the light wave.
Complete step by step solution:
As the energy of the photon is directly proportional to the frequency of the wave so the energy of the visible light is more than that of infrared photons.
\[E \propto \nu \]
As it is given that the photoelectric effect doesn’t occur when the metal surface is illuminated with ultraviolet rays. This means that the frequency of the ultraviolet is less than the threshold frequency of the photoelectric metal. So, to show the photoelectric effect we need ray with higher frequency than the ultraviolet rays.
Light spectrum is the combination of electromagnetic waves of many different wavelengths of energy produced by the light source. As the frequency of the electromagnetic wave is the most characteristic property, the spectrum is characterized based on the range of the frequencies.
Electromagnetic rays | Range of frequency |
\[\gamma - rays\] | \[{10^{20}} - {10^{24}}Hz\] |
X-rays | \[{10^{17}} - {10^{20}}Hz\] |
Ultraviolet rays | \[{10^{15}} - {10^{17}}Hz\] |
Visible spectrum | \[{10^{14.5}} - {10^{15}}Hz\] |
Infra-red | \[{10^{11}} - {10^{14.5}}Hz\] |
Microwave | \[{10^9} - {10^{11}}Hz\] |
FM radio wave | \[{10^6} - {10^9}Hz\] |
AM radio wave | \[{10^5} - {10^6}Hz\] |
Long radio wave | \[{10^0} - {10^5}Hz\] |
The frequency of the X-rays is greater than the frequency of the ultraviolet rays. So, the energy of the photons of the X-rays is greater than that of ultraviolet rays. So, the photoelectric effect may occur when the photoelectric plate is incident with X-ray.
Therefore, the correct option is B.
Note: From the electromagnetic spectrum we can also compare the wavelengths of the rays to determine the rays which can cause the photoelectric effect. But the energy of the photon is inversely proportional to the wavelength.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
