
The sum of the given series is
$1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + .......... + \dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}} - \dfrac{1}{2}\left( {1 + 2 + 3 + ...... + 15} \right)$
A) 1240
B) 1860
C) 660
D) 620
Answer
214.2k+ views
Hint: Here we bring the given series in summation form and solve them.
Complete step-by-step answer:
The given series is written as
$1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + .......... + \dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}} - \dfrac{1}{2}\left( {1 + 2 + 3 + ...... + 15} \right)$
Now it is written as
$\sum\limits_{r = 1}^{15} {\dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}}} - \dfrac{1}{2}\sum\limits_{r = 1}^{15} r $
Now you know
${\sum\limits_{r = 1}^n {{r^2} = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} ^2}$ And $\sum\limits_{r = 1}^n {r = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
In this question n=15, so apply this
\[\left[ {{{\sum\limits_{r = 1}^{15} {\dfrac{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}} }^2}} \right] - \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right]\]
\[\left[ {\sum\limits_{r = 1}^{15} {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} } \right] - 60\]
Now break the summation
\[\left[ {\dfrac{1}{2}\sum\limits_{r = 1}^{15} {{n^2} + \dfrac{1}{2}\sum\limits_{r = 1}^{15} n } } \right] - 60\]
Now you know that $\sum\limits_{r = 1}^n {{r^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
$ \Rightarrow \dfrac{1}{2}\left[ {\dfrac{{15(16)(31)}}{6}} \right] + \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right] - 60$
$ \Rightarrow $ 620 + 60 – 60
$ \Rightarrow $620
So option D is correct.
Note: In this type of problem remember the summation formulas it will help you a lot in solving these types of series.
Complete step-by-step answer:
The given series is written as
$1 + \dfrac{{{1^3} + {2^3}}}{{1 + 2}} + \dfrac{{{1^3} + {2^3} + {3^3}}}{{1 + 2 + 3}} + .......... + \dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}} - \dfrac{1}{2}\left( {1 + 2 + 3 + ...... + 15} \right)$
Now it is written as
$\sum\limits_{r = 1}^{15} {\dfrac{{{1^3} + {2^3} + {3^3} + ...... + {{15}^3}}}{{1 + 2 + 3 + ...... + 15}}} - \dfrac{1}{2}\sum\limits_{r = 1}^{15} r $
Now you know
${\sum\limits_{r = 1}^n {{r^2} = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} ^2}$ And $\sum\limits_{r = 1}^n {r = \left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
In this question n=15, so apply this
\[\left[ {{{\sum\limits_{r = 1}^{15} {\dfrac{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}}} }^2}} \right] - \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right]\]
\[\left[ {\sum\limits_{r = 1}^{15} {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} } \right] - 60\]
Now break the summation
\[\left[ {\dfrac{1}{2}\sum\limits_{r = 1}^{15} {{n^2} + \dfrac{1}{2}\sum\limits_{r = 1}^{15} n } } \right] - 60\]
Now you know that $\sum\limits_{r = 1}^n {{r^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
$ \Rightarrow \dfrac{1}{2}\left[ {\dfrac{{15(16)(31)}}{6}} \right] + \dfrac{1}{2}\left[ {\dfrac{{15(16)}}{2}} \right] - 60$
$ \Rightarrow $ 620 + 60 – 60
$ \Rightarrow $620
So option D is correct.
Note: In this type of problem remember the summation formulas it will help you a lot in solving these types of series.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

