
The sides of triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units, where \[{\rm{x}},{\rm{y}} > 0\] . Name the type of the triangle.
A. Right angled
B. Obtuse angled
C. Equilateral
D. None of these
Answer
221.1k+ views
Hint: First we will check whether given triangle is an equilateral triangle to compare the sides of the triangle. Then we will find the largest angle by using cosine formula to check whether the given triangle obtuse triangle or right angled triangle.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

