
The sides of triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units, where \[{\rm{x}},{\rm{y}} > 0\] . Name the type of the triangle.
A. Right angled
B. Obtuse angled
C. Equilateral
D. None of these
Answer
232.8k+ views
Hint: First we will check whether given triangle is an equilateral triangle to compare the sides of the triangle. Then we will find the largest angle by using cosine formula to check whether the given triangle obtuse triangle or right angled triangle.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

