
The sides of triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units, where \[{\rm{x}},{\rm{y}} > 0\] . Name the type of the triangle.
A. Right angled
B. Obtuse angled
C. Equilateral
D. None of these
Answer
161.1k+ views
Hint: First we will check whether given triangle is an equilateral triangle to compare the sides of the triangle. Then we will find the largest angle by using cosine formula to check whether the given triangle obtuse triangle or right angled triangle.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Formula Used:Cosine formula:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - {{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Complete step by step solution:The lengths of sides of the triangle are \[3x + 4y\], \[4{\rm{x}} + 3{\rm{y }}\,{\rm{and}}\;\,5x + 5{\rm{y}}\] units.
Assume that, \[a = 3x + 4y\], \[b = 4x + 3y\], and \[c = 5x + 5y\]
Image: Triangle ABC
Since the lengths of the sides of the triangle is not equal to each other. Thus the triangle is not an equilateral triangle.
If the value of x and y are equal, then the largest side of the triangle is c. Thus the largest angle of the triangle is angle C.
Now we will find the value of angle C using cosine rule:
\[\cos {\rm{C }} = \,\,\dfrac{{{{\rm{a}}^2} + {b^2} - \,{{\rm{c}}^2}}}{{2{\rm{ab}}}}\]
Putting the values of a, b, and c in the formula,
\[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}} + 4y} \right)}^2} + {{\left( {4{\rm{x}} + 3{\rm{y}}} \right)}^2} - {{\left( {5{\rm{x}} + 5y} \right)}^2}}}{{2 \times \left( {3{\rm{x}} + 4y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
Applying algebraically identity: \[\cos {\rm{C }} = \,\,\dfrac{{{{\left( {3{\rm{x}}} \right)}^2} + {{\left( {4y} \right)}^2} + 2 \times \left( {3{\rm{x}}} \right)\left( {4y} \right) + {{\left( {4{\rm{x}}} \right)}^2} + {{\left( {3{\rm{y}}} \right)}^2} + 2 \times \left( {4{\rm{x}}} \right)\left( {3y} \right) - \left[ {{{\left( {5{\rm{x}}} \right)}^2} + {{\left( {5{\rm{y}}} \right)}^2} + 2 \times \left( {5{\rm{x}}} \right)\left( {5y} \right)} \right]}}{{\left( {6{\rm{x}} + 8y} \right) \times \left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]Simplify the above expression:
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - \left[ {25{{\rm{x}}^2} + 25{{\rm{y}}^2} + 50{\rm{xy}}} \right]}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[\cos {\rm{C }} = \,\,\dfrac{{9{{\rm{x}}^2} + 16{{\rm{y}}^2} + 24{\rm{xy}} + 16{{\rm{x}}^2} + 9{y^2} + 24{\rm{xy}} - 25{{\rm{x}}^2} - 25{{\rm{y}}^2} - 50{\rm{xy}}}}{{6x \times \left( {4{\rm{x}} + 3{\rm{y}}} \right) + 8y\left( {4{\rm{x}} + 3{\rm{y}}} \right)}}\]
\[ = \dfrac{{ - \,2{\rm{xy}}}}{{2\left( {12{{\rm{x}}^2} + 25xy + 12{{\rm{y}}^2}} \right)}}\] \( < 0\)
Therefore, C is an obtuse angle.
Option ‘B’ is correct
Note: Another procedure to check it:
Check by putting \[{\rm{x}} = 1\] and \[{\rm{y}} = 1\]
\[\cos {\rm{C}} = \dfrac{{ - \,2 \times 1 \times 1}}{{2\left( {12 \times 1 \times 1 + 25 \times 1 \times 1 + 12 \times 1 \times 1} \right)}}\]
\(\cos {\rm{C}}\,\, = \,\,\left( {\dfrac{{ - 1}}{{49}}} \right)\)
\(\cos \,{\rm{C}}\,\, = \,\, - 0\,.020\)
\[{\rm{C}}\, = \,\,{\cos ^{ - 1}}\,\,\,\left( { - 0\,.020} \right)\,\,\]
\({\rm{C}}\,\, = \,271.169^\circ \)
The value of the inverse of cosine\(\, - 0\,.020\) is\(271.169^\circ \). It simply tells that the angle is obtuse.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
