
The photoelectric threshold wavelength of silver is $3250 \times {10^{ - 19}}m$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times {10^{ - 10}}m$is:
(Given $h = 4.14 \times {10^{ - 15}}eVs$ and $c = 3 \times {10^8}m{s^{ - 1}}$)
(A) $ \approx 0.3 \times {10^6}m{s^{ - 1}}$
(B) $ \approx 6 \times {10^5}m{s^{ - 1}}$
(C) $ \approx 6 \times {10^6}m{s^{ - 1}}$
(D) $ \approx 61 \times {10^3}m{s^{ - 1}}$
Answer
225k+ views
Hint According to Einstein’s equation for the photoelectric effect, the kinetic energy of the electron is given by the difference in the incident energy and the wave function of the electron. And the kinetic energy is given by half of mass times the velocity squared. This can be used to determine the velocity of an electron.
Formula used:
$\Rightarrow$ $K = \dfrac{1}{2}m{v^2}$
$\Rightarrow$ $K = E - \phi $
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Where $K$ is the kinetic energy of the electron.
$\Rightarrow$ $m$ is the mass of the electron.
$\Rightarrow$ $v$ is the velocity with which the electron is ejected.
$\Rightarrow$ $E$ is the energy of incident light.
$\Rightarrow$ $\phi $ is the work function of the electron.
$h$ is the Planck’s constant.
$\Rightarrow$ $c$ is the speed of light in vacuum.
$\lambda $ is the wavelength of the light.
Complete Step by step solution
When light with a frequency greater than the threshold frequency strikes photoelectric metal, some part of this energy called Work Function $\left( \phi \right)$ is used to provide enough energy to the electrons to escape the lattice, the rest of the energy is used as kinetic energy with which the electron travels away from the metal plate. This relation can be given by-
$\Rightarrow$ $E = K + \phi $
The kinetic energy is-
$\Rightarrow$ $K = E - \phi $
The threshold wavelength$\left( {{\lambda _0}} \right)$is the wavelength at which the electron gains enough energy to escape the lattice. The energy carried by the threshold frequency is equal to the work function of the electron.
Therefore,
$\Rightarrow$ $\phi = \dfrac{{hc}}{{{\lambda _0}}}$
The incident energy on the silver surface,
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Therefore,
$\Rightarrow$ $K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}$
We know that,
$K = \dfrac{1}{2}m{v^2}$
The equation becomes-
$\Rightarrow$ $\dfrac{1}{2}m{v^2} = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)$
Rearranging,
$\Rightarrow$ $v = \sqrt {\dfrac{{2hc}}{m}\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)} $
It is given in the question that,
Threshold wavelength,${\lambda _0} = 3250 \times {10^{ - 19}}m$
Incident wavelength, $\lambda = 2536 \times {10^{ - 10}}m$
Velocity of light, $c = 3 \times {10^8}m{s^{ - 1}}$
Mass of electron, $m = 9.1 \times {10^{ - 31}}kg$
The Planck’s constant, $h = 4.14 \times {10^{ - 15}}eVs$
Converting this into SI units,
$\Rightarrow$ $1eVs = 1.602 \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 4.14 \times 1.602 \times {10^{ - 15}} \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 6.63 \times {10^{ - 34}}Js$
Putting these values in the equation,
$v = \sqrt {\dfrac{{2 \times 6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}}}}\left( {\dfrac{1}{{2536 \times {{10}^{ - 10}}}} - \dfrac{1}{{3250 \times {{10}^{ - 19}}}}} \right)} $
$v = \sqrt {\dfrac{{2 \times 6.63 \times 3 \times {{10}^{ - 34}} \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}} \times {{10}^{ - 29}}}}\left( {\dfrac{{3250 \times {{10}^{ - 19}} - 2536 \times {{10}^{ - 10}}}}{{2536 \times 3250}}} \right)} $
On solving this equation we get,
$v \approx 6 \times {10^5}m/s$
Therefore, option (B) is correct.
Note To obtain the velocity in the SI units, the value of Planck’s constant must be converted into SI units and the mass of the electron must also be written in kilograms. Failure in doing so may give incorrect answers. Also, the equation for velocity can be solved step by step instead of a large-single equation to avoid calculation mistakes.
Formula used:
$\Rightarrow$ $K = \dfrac{1}{2}m{v^2}$
$\Rightarrow$ $K = E - \phi $
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Where $K$ is the kinetic energy of the electron.
$\Rightarrow$ $m$ is the mass of the electron.
$\Rightarrow$ $v$ is the velocity with which the electron is ejected.
$\Rightarrow$ $E$ is the energy of incident light.
$\Rightarrow$ $\phi $ is the work function of the electron.
$h$ is the Planck’s constant.
$\Rightarrow$ $c$ is the speed of light in vacuum.
$\lambda $ is the wavelength of the light.
Complete Step by step solution
When light with a frequency greater than the threshold frequency strikes photoelectric metal, some part of this energy called Work Function $\left( \phi \right)$ is used to provide enough energy to the electrons to escape the lattice, the rest of the energy is used as kinetic energy with which the electron travels away from the metal plate. This relation can be given by-
$\Rightarrow$ $E = K + \phi $
The kinetic energy is-
$\Rightarrow$ $K = E - \phi $
The threshold wavelength$\left( {{\lambda _0}} \right)$is the wavelength at which the electron gains enough energy to escape the lattice. The energy carried by the threshold frequency is equal to the work function of the electron.
Therefore,
$\Rightarrow$ $\phi = \dfrac{{hc}}{{{\lambda _0}}}$
The incident energy on the silver surface,
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Therefore,
$\Rightarrow$ $K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}$
We know that,
$K = \dfrac{1}{2}m{v^2}$
The equation becomes-
$\Rightarrow$ $\dfrac{1}{2}m{v^2} = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)$
Rearranging,
$\Rightarrow$ $v = \sqrt {\dfrac{{2hc}}{m}\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)} $
It is given in the question that,
Threshold wavelength,${\lambda _0} = 3250 \times {10^{ - 19}}m$
Incident wavelength, $\lambda = 2536 \times {10^{ - 10}}m$
Velocity of light, $c = 3 \times {10^8}m{s^{ - 1}}$
Mass of electron, $m = 9.1 \times {10^{ - 31}}kg$
The Planck’s constant, $h = 4.14 \times {10^{ - 15}}eVs$
Converting this into SI units,
$\Rightarrow$ $1eVs = 1.602 \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 4.14 \times 1.602 \times {10^{ - 15}} \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 6.63 \times {10^{ - 34}}Js$
Putting these values in the equation,
$v = \sqrt {\dfrac{{2 \times 6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}}}}\left( {\dfrac{1}{{2536 \times {{10}^{ - 10}}}} - \dfrac{1}{{3250 \times {{10}^{ - 19}}}}} \right)} $
$v = \sqrt {\dfrac{{2 \times 6.63 \times 3 \times {{10}^{ - 34}} \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}} \times {{10}^{ - 29}}}}\left( {\dfrac{{3250 \times {{10}^{ - 19}} - 2536 \times {{10}^{ - 10}}}}{{2536 \times 3250}}} \right)} $
On solving this equation we get,
$v \approx 6 \times {10^5}m/s$
Therefore, option (B) is correct.
Note To obtain the velocity in the SI units, the value of Planck’s constant must be converted into SI units and the mass of the electron must also be written in kilograms. Failure in doing so may give incorrect answers. Also, the equation for velocity can be solved step by step instead of a large-single equation to avoid calculation mistakes.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

