
The PE and KE of a helicopter flying horizontally at a height of 400 m are in the ratio of \[5:2\]. The velocity of the helicopter is:
(A) \[28{\text{ }}m/s\]
(B) \[14{\text{ }}m/s\]
(C) \[56{\text{ }}m/s\]
(D) \[30{\text{ }}m/s\]
Answer
233.1k+ views
Hint We need to calculate the potential energy and kinetic energy of the helicopter and then divide them. That ratio will be equal to \[5:2\], except for the velocity all other quantities are known.
Complete step by step answer
Potential energy of a body at a height h is given as:
\[PE\, = \,mgh\]
Where m is the mass of the body
g is the acceleration due to gravity
h is the height of the body above the surface of the earth
Also, kinetic energy of the body is given as
\[KE\, = \,\dfrac{{m{v^2}}}{2}\]
Where m is the mass of the body
v is the velocity of the body
The ratio of these 2 quantities is given as \[5:2\], equating
\[
\dfrac{{mgh}}{{\dfrac{1}{2}m{v^2}}}\, = \,\dfrac{5}{2} \\
\Rightarrow \dfrac{{2gh}}{{{v^2}}}\, = \,\dfrac{5}{2} \\
\Rightarrow \dfrac{{4\,\times\,9.81\,\times\,400}}{5}\, = \,{v^2} \\
\Rightarrow v = \sqrt {\dfrac{{4\,\times\,9.81\,\times\,400}}{5}} \\
\Rightarrow v\, = \,56.7 \\
\]
Therefore the option with the correct answer is option C.
Note Make sure of the ratios. Usually, options also mention the reciprocals in the answers.
Make sure that you only use mgh when the body is nearly on the surface of the earth else one can go wrong.
Potential energy between 2 bodies is also written as \[PE{\text{ }} = {\text{ }} - \dfrac{{GMm}}{r}\], where M and m are the masses of 2 bodies, this is valid everywhere, however the equation mgh is valid only for a body resting on earth or very close to the surface of Earth.
Complete step by step answer
Potential energy of a body at a height h is given as:
\[PE\, = \,mgh\]
Where m is the mass of the body
g is the acceleration due to gravity
h is the height of the body above the surface of the earth
Also, kinetic energy of the body is given as
\[KE\, = \,\dfrac{{m{v^2}}}{2}\]
Where m is the mass of the body
v is the velocity of the body
The ratio of these 2 quantities is given as \[5:2\], equating
\[
\dfrac{{mgh}}{{\dfrac{1}{2}m{v^2}}}\, = \,\dfrac{5}{2} \\
\Rightarrow \dfrac{{2gh}}{{{v^2}}}\, = \,\dfrac{5}{2} \\
\Rightarrow \dfrac{{4\,\times\,9.81\,\times\,400}}{5}\, = \,{v^2} \\
\Rightarrow v = \sqrt {\dfrac{{4\,\times\,9.81\,\times\,400}}{5}} \\
\Rightarrow v\, = \,56.7 \\
\]
Therefore the option with the correct answer is option C.
Note Make sure of the ratios. Usually, options also mention the reciprocals in the answers.
Make sure that you only use mgh when the body is nearly on the surface of the earth else one can go wrong.
Potential energy between 2 bodies is also written as \[PE{\text{ }} = {\text{ }} - \dfrac{{GMm}}{r}\], where M and m are the masses of 2 bodies, this is valid everywhere, however the equation mgh is valid only for a body resting on earth or very close to the surface of Earth.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

