
The equation \[(x - {x_1})(x - {x_2}) + (y - {y_1})(y - {y_2}) = 0\] represents a circle whose centre is
A $\left( {\dfrac{{{x_1} - {x_2}}}{2},\dfrac{{{y_1} - {y_2}}}{2}} \right)$
B $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
C $\left( {{x_1},{y_1}} \right)$
D $\left( {{x_2},{y_2}} \right)$
Answer
232.8k+ views
Hint: First, we will simplify the given equation \[(x - {x_1})(x - {x_2}) + (y - {y_1})(y - {y_2}) = 0\] by multiplying the given factors. Then will use completing the square method to form the equation of the circle so that we can compare that with the general equation of the circle to find the center of the circle.
Complete step by step Solution:
Given, the equation of circle \[(x - {x_1})(x - {x_2}) + (y - {y_1})(y - {y_2}) = 0\].
\[(x - (x_1))(x - (x_2)) + (y - (y_1))(y - (y_2)) = 0\]
On multiplying the given factors of the above equation to get a simplified equation
${x^2} - x{x_2} - x{x_1} + {x_1}{x _2} + {y^2} - {y_1}y - {y_2}y + {y_1}{y_2} = 0$
Taking a common variable from the above equation
${x^2} - ({x_2} + {x_1})x + {x_1}{x _2} + {y^2} - ({y_1} + {y_2})y + {y_1}{y_2} = 0$
Using the completing the square method to get the required equation
${x^2} - ({x_2} + {x_1})x + {x_1}{x _2} + {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {y^2} - ({y_1} + {y_2})y + {y_1}{y_2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2}$
Collecting like terms such that we can make a square
\[{(x - \left( {\dfrac{{{x_1} + {x_2}}}{2}} \right))^2} + {x_1}{x_2} + {(y - \left( {\dfrac{{{y_1} + {y_2}}}{2}} \right))^2} + {y_1}{y_2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2}\]
Shifting ${x_1}{x_2}$ and ${y_1}{y_2}$ to the other side
\[{(x - \left( {\dfrac{{{x_1} + {x_2}}}{2}} \right))^2} + {(y - \left( {\dfrac{{{y_1} + {y_2}}}{2}} \right))^2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {x_1}{x_2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2} + {y_1}{y_2}\]
Comparing with standard equation of circle ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$
Where $({x_1},{y_1})$ is the centre of the circle
In comparing we observe that the center of the given circle is
$\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Therefore, the correct option is B.
Additional Information: Given the circle's center and radius, the equation of a circle offers an algebraic approach to describing a circle. The formulas used to determine a circle's area or circumference are different from the equation for a circle. Numerous coordinate geometry problems involving circles employ this equation. The group of points whose separation from a fixed point has a constant value is represented by a circle. The radius of the circle, abbreviated r, is a constant that describes this fixed point, which is known as the circle's center. The standard equation of circle is ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$.
Note: Students should do calculations carefully to avoid any mistakes. They should avoid any direct calculations to avoid any errors and get correct solutions. They should use the given concept correctly.
Complete step by step Solution:
Given, the equation of circle \[(x - {x_1})(x - {x_2}) + (y - {y_1})(y - {y_2}) = 0\].
\[(x - (x_1))(x - (x_2)) + (y - (y_1))(y - (y_2)) = 0\]
On multiplying the given factors of the above equation to get a simplified equation
${x^2} - x{x_2} - x{x_1} + {x_1}{x _2} + {y^2} - {y_1}y - {y_2}y + {y_1}{y_2} = 0$
Taking a common variable from the above equation
${x^2} - ({x_2} + {x_1})x + {x_1}{x _2} + {y^2} - ({y_1} + {y_2})y + {y_1}{y_2} = 0$
Using the completing the square method to get the required equation
${x^2} - ({x_2} + {x_1})x + {x_1}{x _2} + {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {y^2} - ({y_1} + {y_2})y + {y_1}{y_2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2}$
Collecting like terms such that we can make a square
\[{(x - \left( {\dfrac{{{x_1} + {x_2}}}{2}} \right))^2} + {x_1}{x_2} + {(y - \left( {\dfrac{{{y_1} + {y_2}}}{2}} \right))^2} + {y_1}{y_2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2}\]
Shifting ${x_1}{x_2}$ and ${y_1}{y_2}$ to the other side
\[{(x - \left( {\dfrac{{{x_1} + {x_2}}}{2}} \right))^2} + {(y - \left( {\dfrac{{{y_1} + {y_2}}}{2}} \right))^2} = {\left( {\dfrac{{{x_1} + {x_2}}}{2}} \right)^2} + {x_1}{x_2} + {\left( {\dfrac{{{y_1} + {y_2}}}{2}} \right)^2} + {y_1}{y_2}\]
Comparing with standard equation of circle ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$
Where $({x_1},{y_1})$ is the centre of the circle
In comparing we observe that the center of the given circle is
$\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Therefore, the correct option is B.
Additional Information: Given the circle's center and radius, the equation of a circle offers an algebraic approach to describing a circle. The formulas used to determine a circle's area or circumference are different from the equation for a circle. Numerous coordinate geometry problems involving circles employ this equation. The group of points whose separation from a fixed point has a constant value is represented by a circle. The radius of the circle, abbreviated r, is a constant that describes this fixed point, which is known as the circle's center. The standard equation of circle is ${\left( {x - {x_1}} \right)^2} + {\left( {y - {y_1}} \right)^2} = {r^2}$.
Note: Students should do calculations carefully to avoid any mistakes. They should avoid any direct calculations to avoid any errors and get correct solutions. They should use the given concept correctly.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

