
The equation whose roots are reciprocal of the roots of the equation $3{{x}^{2}}-20x+17=0$ is
( a ) $3{{x}^{2}}+20x-17=0$
( b ) $17{{x}^{2}}-20x+3=0$
( c ) $17{{x}^{2}}+20x+3=0$
( d ) none of these
Answer
233.1k+ views
Hint: In this question, we are given a quadratic equation and we have to find the equation whose roots are reciprocal to the roots of the given quadratic equation. For this, first we find the roots of the given quadratic equation by putting the values in the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. Then by doing the reciprocal of roots and finding the sum and the product of that roots, we are able to find the quadratic equation.
Formula used:
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Complete step by step Solution:
Here we are given the equation $3{{x}^{2}}-20x+17=0$
Compare the above equation with the standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
a = 3, b = -20, c = 17
We can the formula to find the quadratic equation is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By putting the values of a, b, and c in the above equation, we get
$x=\dfrac{-(-20)\pm \sqrt{{{(-20)}^{2}}-4(3)(17)}}{2(3)}$
By simplifying the above equation, we get
$x=\dfrac{-(-20)\pm \sqrt{196}}{6}$
That is $x=\dfrac{20\pm 14}{6}$
Then $ x = \dfrac{20+14}{6},\dfrac{20-14}{6}$
$x = \dfrac{34}{6},\dfrac{6}{6}$
Then $x = \dfrac{17}{3},1$
Hence the roots of the given equation are $\dfrac{17}{3},1$
So we need to form an equation whose roots are $\dfrac{3}{17},1$
Sum of roots = $\dfrac{3}{17}+1$= $\dfrac{20}{17}$
And the product of roots = $\dfrac{3}{17}\times 1$= $\dfrac{3}{17}$
We know in a quadratic equation, there is $ x^2$ -(sum of roots)$x$ +product of roots
Now By putting the values of the sum of roots and the product of roots, we get
Hence the required equation is ${{x}^{2}}-\dfrac{20}{17}x+\dfrac{3}{17}=0$
That is $17{{x}^{2}}-20x+3=0$
Therefore, the correct option is (b).
Note:To find the roots of the quadratic equation we use the formula:-
As we know standard form of quadratic equation is $a{{x}^{2}}+bx+c=0$
Then its roots are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Formula used:
$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Complete step by step Solution:
Here we are given the equation $3{{x}^{2}}-20x+17=0$
Compare the above equation with the standard form of quadratic equation $a{{x}^{2}}+bx+c=0$, we get
a = 3, b = -20, c = 17
We can the formula to find the quadratic equation is $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
By putting the values of a, b, and c in the above equation, we get
$x=\dfrac{-(-20)\pm \sqrt{{{(-20)}^{2}}-4(3)(17)}}{2(3)}$
By simplifying the above equation, we get
$x=\dfrac{-(-20)\pm \sqrt{196}}{6}$
That is $x=\dfrac{20\pm 14}{6}$
Then $ x = \dfrac{20+14}{6},\dfrac{20-14}{6}$
$x = \dfrac{34}{6},\dfrac{6}{6}$
Then $x = \dfrac{17}{3},1$
Hence the roots of the given equation are $\dfrac{17}{3},1$
So we need to form an equation whose roots are $\dfrac{3}{17},1$
Sum of roots = $\dfrac{3}{17}+1$= $\dfrac{20}{17}$
And the product of roots = $\dfrac{3}{17}\times 1$= $\dfrac{3}{17}$
We know in a quadratic equation, there is $ x^2$ -(sum of roots)$x$ +product of roots
Now By putting the values of the sum of roots and the product of roots, we get
Hence the required equation is ${{x}^{2}}-\dfrac{20}{17}x+\dfrac{3}{17}=0$
That is $17{{x}^{2}}-20x+3=0$
Therefore, the correct option is (b).
Note:To find the roots of the quadratic equation we use the formula:-
As we know standard form of quadratic equation is $a{{x}^{2}}+bx+c=0$
Then its roots are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

JEE Main 2026 Answer Key OUT Check PDF Response Sheet

JEE Main 2026 Admit Card OUT LIVE | Session 1 Direct Download Link

JEE Main 2023 April 8 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 8 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

