
The energy flux of sunlight reaching the surface of the earth is $1.388 \times 10^3 W/m^2$. How many photons (nearly) per square metre are incident on the Earth per second? Assume that the photons in the sunlight have an average wavelength of $550\,nm$.
Answer
161.1k+ views
Hint: The energy flux of sunlight is the power of sunlight reaching the surface of the earth per ${m^2}$.
Power can also be written as the product of energy of each photon and the total number of photons.$P = nE$
Energy of photon,$E$ is given by the equation
$E = h\upsilon $
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant.
The value of Planck’s constant is
\[h = 6.626 \times {10^{ - 34}}\,{m^2}kg{s^{ - 1}}\]
We know $c = \upsilon \lambda $
Where, $c$ is the speed of light and $\lambda $ is the wavelength.
Therefore,
$\upsilon = \dfrac{c}{\lambda }$
Complete step by step solution:
The energy flux of sunlight or the power of sunlight reaching the surface of the earth per ${m^2}$ is $\phi = 1.388 \times {10^3} W/{{m^2}}$.
That is power, $P = 1.388 \times {10^3}\,W$
Average wavelength,
$
\lambda = 550\,nm \\
= 550 \times {10^{ - 9}}\,m \\
$.
We need to find the number of photons per square meter that are incident on the Earth per second.
Let this number be $n$ .
Power can also be written as the product of energy of each photon and the total number of photons.$P = nE$
Energy of photon,$E$ is given by the equation
$E = h\upsilon $...........….. (1)
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant.
The value of Planck’s constant is
\[h = 6.626 \times {10^{ - 34}}\,{m^2}kg{s^{ - 1}}\]
In the question the wavelength of the photon is given. Hence, we need to write equation (1) in terms of wavelength.
We know $c = \upsilon \lambda $
Where, $c$ is the speed of light.
Therefore,
$\upsilon = \dfrac{c}{\lambda }$..........……(2)
Substitute equation (2) in equation (1). We get
$E = h\dfrac{c}{\lambda }$
Therefore,
$
P = nE \\
= nh\dfrac{c}{\lambda } \\
$
We need to find $n$
That is,
$n = \dfrac{{P\lambda }}{{hc}}$
Now, substitute the given values.
$
n = \dfrac{{1.388 \times {{10}^3}\, \times 550 \times {{10}^{ - 9}}\,}}{{6.626 \times {{10}^{ - 34}}\, \times 3 \times {{10}^8}}} \\
= 3.847 \times {10^{21}}\, \\
$
So, the number of photons per square meter that are incident on the Earth per second is $3.847 \times {10^{21}}\,$.
Note: Formulae to remember-
$P = nE$
Where, $n$ is the number of photons and $E$ is the energy of each photon.
$E = h\upsilon $
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant
$c = \upsilon \lambda $
Where, $c$ is the speed of light, $\upsilon $ is the frequency and $\lambda $ is the wavelength.
Power can also be written as the product of energy of each photon and the total number of photons.$P = nE$
Energy of photon,$E$ is given by the equation
$E = h\upsilon $
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant.
The value of Planck’s constant is
\[h = 6.626 \times {10^{ - 34}}\,{m^2}kg{s^{ - 1}}\]
We know $c = \upsilon \lambda $
Where, $c$ is the speed of light and $\lambda $ is the wavelength.
Therefore,
$\upsilon = \dfrac{c}{\lambda }$
Complete step by step solution:
The energy flux of sunlight or the power of sunlight reaching the surface of the earth per ${m^2}$ is $\phi = 1.388 \times {10^3} W/{{m^2}}$.
That is power, $P = 1.388 \times {10^3}\,W$
Average wavelength,
$
\lambda = 550\,nm \\
= 550 \times {10^{ - 9}}\,m \\
$.
We need to find the number of photons per square meter that are incident on the Earth per second.
Let this number be $n$ .
Power can also be written as the product of energy of each photon and the total number of photons.$P = nE$
Energy of photon,$E$ is given by the equation
$E = h\upsilon $...........….. (1)
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant.
The value of Planck’s constant is
\[h = 6.626 \times {10^{ - 34}}\,{m^2}kg{s^{ - 1}}\]
In the question the wavelength of the photon is given. Hence, we need to write equation (1) in terms of wavelength.
We know $c = \upsilon \lambda $
Where, $c$ is the speed of light.
Therefore,
$\upsilon = \dfrac{c}{\lambda }$..........……(2)
Substitute equation (2) in equation (1). We get
$E = h\dfrac{c}{\lambda }$
Therefore,
$
P = nE \\
= nh\dfrac{c}{\lambda } \\
$
We need to find $n$
That is,
$n = \dfrac{{P\lambda }}{{hc}}$
Now, substitute the given values.
$
n = \dfrac{{1.388 \times {{10}^3}\, \times 550 \times {{10}^{ - 9}}\,}}{{6.626 \times {{10}^{ - 34}}\, \times 3 \times {{10}^8}}} \\
= 3.847 \times {10^{21}}\, \\
$
So, the number of photons per square meter that are incident on the Earth per second is $3.847 \times {10^{21}}\,$.
Note: Formulae to remember-
$P = nE$
Where, $n$ is the number of photons and $E$ is the energy of each photon.
$E = h\upsilon $
Where, $\upsilon $ is the frequency and $h$ is the Planck’s constant
$c = \upsilon \lambda $
Where, $c$ is the speed of light, $\upsilon $ is the frequency and $\lambda $ is the wavelength.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE
