
The electrostatic potential inside a charged sphere is given as \[V = A{r^2} + B\], where r is the distance from the center of the sphere; A and B are constants. Then charge density in the sphere is.
Answer
232.8k+ views
Hint: To solve this question we used the poison equation. In the terms of potential and the charge density because in the question potential and charge density are given to us after that, we use the equation in spherical coordinates and solve the question.
Complete step by step solution:
According to question,
The electrostatic potential inside a charged sphere is given by,\[V = A{r^2} + B\]
Where A and B are constants.
Applying the poisson's equation,\[{\Delta ^2}V = - \dfrac{\rho }{{{ \in _0}}}\]----(1)
Where V = potential inside the sphere,\[\rho \]= charge density
First we need find out\[{\Delta ^2}V\],
\[\Rightarrow V = A{r^2} + B\]
In spherical coordinates \[{\Delta ^2}V = \dfrac{1}{{{r^2}\sin \theta }}\left[ {\dfrac{\partial }{{\partial r}}\left( {{r^2}\sin \theta \cdot\dfrac{{\partial V}}{{\partial r}}} \right)} \right]\]
\[\Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\dfrac{\partial }{{\partial r}}\left[ {{r^2}\sin \theta \cdot\dfrac{\partial }{{\partial r}}\left( {A{r^2} + B} \right)} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\dfrac{\partial }{{\partial r}}\left[ {{r^2}\sin \theta \cdot \left( {2Ar} \right)} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\left( {2A\sin \theta } \right)\dfrac{\partial }{{\partial r}}\left[ {{r^3}} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}}}\left( {2A} \right) \times 3{r^2}\]
\[\Rightarrow {\Delta ^2}V = 6A\]
Put the value of \[{\Delta ^2}V\]in equation(1)
\[\Rightarrow {\Delta ^2}V = - \dfrac{\rho }{{{ \in _0}}}\]
\[\Rightarrow 6A = -\dfrac{\rho }{{{ \in _0}}}\]
\[\Rightarrow \boxed{\rho = - 6A{ \in _0}}\]
Where\[\rho \] is the charge density.
Note: Maximum times, students do not use the spherical coordinates but we should the spherical coordinates, because we have a charged sphere.
Complete step by step solution:
According to question,
The electrostatic potential inside a charged sphere is given by,\[V = A{r^2} + B\]
Where A and B are constants.
Applying the poisson's equation,\[{\Delta ^2}V = - \dfrac{\rho }{{{ \in _0}}}\]----(1)
Where V = potential inside the sphere,\[\rho \]= charge density
First we need find out\[{\Delta ^2}V\],
\[\Rightarrow V = A{r^2} + B\]
In spherical coordinates \[{\Delta ^2}V = \dfrac{1}{{{r^2}\sin \theta }}\left[ {\dfrac{\partial }{{\partial r}}\left( {{r^2}\sin \theta \cdot\dfrac{{\partial V}}{{\partial r}}} \right)} \right]\]
\[\Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\dfrac{\partial }{{\partial r}}\left[ {{r^2}\sin \theta \cdot\dfrac{\partial }{{\partial r}}\left( {A{r^2} + B} \right)} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\dfrac{\partial }{{\partial r}}\left[ {{r^2}\sin \theta \cdot \left( {2Ar} \right)} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}\sin \theta }}\left( {2A\sin \theta } \right)\dfrac{\partial }{{\partial r}}\left[ {{r^3}} \right]\]
\[ \Rightarrow \dfrac{1}{{{r^2}}}\left( {2A} \right) \times 3{r^2}\]
\[\Rightarrow {\Delta ^2}V = 6A\]
Put the value of \[{\Delta ^2}V\]in equation(1)
\[\Rightarrow {\Delta ^2}V = - \dfrac{\rho }{{{ \in _0}}}\]
\[\Rightarrow 6A = -\dfrac{\rho }{{{ \in _0}}}\]
\[\Rightarrow \boxed{\rho = - 6A{ \in _0}}\]
Where\[\rho \] is the charge density.
Note: Maximum times, students do not use the spherical coordinates but we should the spherical coordinates, because we have a charged sphere.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

