
The dimensions of $\dfrac{\alpha }{\beta } $ in the equation $F = \dfrac{{\alpha - {t^2}}}{{\beta {v^2}}} $ where $F $ is the force, $v $ is velocity and $t $ is time, is
(1) $[ML{T^{ - 1}}] $
(2) $[M{L^{ - 1}}{T^{ - 2}}] $
(3) $[M{L^3}{T^{ - 4}}] $
(4) $[M{L^2}{T^{ - 4}}] $
Answer
216.3k+ views
Hint The dimensions of a physical quantity and the dimensional formula of the physical quantity unit are the same. All physical quantities can be articulated in terms of seven fundamental (base) quantities which are mass, length, time, temperature, electric current, luminous intensity, and amount of substance. These seven quantities are called the seven dimensions of the physical world.
Complete step-by-step answer
It is given in the question that $F = \dfrac{{\alpha - {t^2}}}{{\beta {v^2}}} $ where $F $ is the force, $v $ is velocity and $t $ is time.
We know the dimensions of force, velocity, and time which are,
$F = [ML{T^{ - 2}}] $
$t = [{M^0}{L^0}T] $
$v = [{M^0}L{T^{ - 1}}] $
$M $, $L $ and $T $ are used to represent the dimensions of the three mechanical quantities mass, length, and time respectively and $K $ is used for temperature, $I $ is used for electric current, $cd $ is used for luminous intensity and $mol $ is used for the amount of substance.
Only the quantities with the same dimensional formula can be added or subtracted from each other. Hence from this, we can say that the dimensions of $\alpha = [{T^2}] $.
Inserting this dimensional formula into the given formula of force and then doing dimensional analysis
$[ML{T^{ - 2}}] = \dfrac{{[{T^2}]}}{{\beta {{[L{T^{ - 1}}]}^2}}} $
$\Rightarrow [ML{T^{ - 2}}] = \dfrac{{[{T^2}]}}{{\beta [{L^2}{T^{ - 2}}]}} $
$\Rightarrow\beta = [{M^{ - 1}}{L^{ - 3}}{T^6}] $
Hence dimension of $\beta $is $[{M^{ - 1}}{L^{ - 3}}{T^6}] $
Using dimensions of $\beta $ and $\alpha $ we can find the dimensions of $\dfrac{\alpha }{\beta } $.
$\dfrac{\alpha }{\beta } = \dfrac{{[{T^2}]}}{{[{M^{ - 1}}{L^{ - 3}}{T^6}]}} $
$\Rightarrow \dfrac{\alpha }{\beta } = [{M^1}{L^3}{T^{ - 4}}] $
Therefore the correct answer is (3) $[M{L^3}{T^{ - 4}}] $
Note
There are certain limitations to the use of dimensional analysis which are that it does not tell anything about the dimensional constant present in an equation, it fails where there are more than three quantities whose dimensions are not known to us, there are certain quantities whose dimensional formula is same so we cannot differentiate them with this.
Complete step-by-step answer
It is given in the question that $F = \dfrac{{\alpha - {t^2}}}{{\beta {v^2}}} $ where $F $ is the force, $v $ is velocity and $t $ is time.
We know the dimensions of force, velocity, and time which are,
$F = [ML{T^{ - 2}}] $
$t = [{M^0}{L^0}T] $
$v = [{M^0}L{T^{ - 1}}] $
$M $, $L $ and $T $ are used to represent the dimensions of the three mechanical quantities mass, length, and time respectively and $K $ is used for temperature, $I $ is used for electric current, $cd $ is used for luminous intensity and $mol $ is used for the amount of substance.
Only the quantities with the same dimensional formula can be added or subtracted from each other. Hence from this, we can say that the dimensions of $\alpha = [{T^2}] $.
Inserting this dimensional formula into the given formula of force and then doing dimensional analysis
$[ML{T^{ - 2}}] = \dfrac{{[{T^2}]}}{{\beta {{[L{T^{ - 1}}]}^2}}} $
$\Rightarrow [ML{T^{ - 2}}] = \dfrac{{[{T^2}]}}{{\beta [{L^2}{T^{ - 2}}]}} $
$\Rightarrow\beta = [{M^{ - 1}}{L^{ - 3}}{T^6}] $
Hence dimension of $\beta $is $[{M^{ - 1}}{L^{ - 3}}{T^6}] $
Using dimensions of $\beta $ and $\alpha $ we can find the dimensions of $\dfrac{\alpha }{\beta } $.
$\dfrac{\alpha }{\beta } = \dfrac{{[{T^2}]}}{{[{M^{ - 1}}{L^{ - 3}}{T^6}]}} $
$\Rightarrow \dfrac{\alpha }{\beta } = [{M^1}{L^3}{T^{ - 4}}] $
Therefore the correct answer is (3) $[M{L^3}{T^{ - 4}}] $
Note
There are certain limitations to the use of dimensional analysis which are that it does not tell anything about the dimensional constant present in an equation, it fails where there are more than three quantities whose dimensions are not known to us, there are certain quantities whose dimensional formula is same so we cannot differentiate them with this.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

