
The de-Broglie wavelength of a proton (mass $ = 1.6 \times {10^{ - 27}}kg$) accelerated through a potential difference of $1kV$is:
A) $600{A^ \circ }$
B) $0.9 \times {10^{ - 12}}m$
C) $7{A^ \circ }$
D) $0.9 \times {10^{ - 19}}nm$
Answer
221.1k+ views
Hint: According to de- Broglie principle, matter acts as a wave same as that of light which has dual nature of both matter and particles. The de- Broglie wavelength helps to determine the idea of matter that has a wavelength. The particles can be microscopic or macroscopic.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Recently Updated Pages
[Awaiting input: Please provide the content from "Ask AI Response," "Competitor 1," and "Competitor 2," so I can perform the analysis and synthesize the requested metadata and headings.]

Young’s Double Slit Experiment Derivation Explained

A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

