
The de-Broglie wavelength of a proton (mass $ = 1.6 \times {10^{ - 27}}kg$) accelerated through a potential difference of $1kV$is:
A) $600{A^ \circ }$
B) $0.9 \times {10^{ - 12}}m$
C) $7{A^ \circ }$
D) $0.9 \times {10^{ - 19}}nm$
Answer
233.1k+ views
Hint: According to de- Broglie principle, matter acts as a wave same as that of light which has dual nature of both matter and particles. The de- Broglie wavelength helps to determine the idea of matter that has a wavelength. The particles can be microscopic or macroscopic.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Complete step by step solution:
If the proton has a charge ‘q’ and it is accelerated through a potential applied then the kinetic energy of the proton is given by
$E = qV$---(i)
The formula for the kinetic energy of a moving particle is given by
$E = \dfrac{1}{2}m{v^2}$---(ii)
But the momentum of a body is also the product of its mass and velocity. So it can be written as
$p = mv$
Substituting the value of momentum in equation (ii),
$E = \dfrac{{{p^2}}}{{2m}}$
$\Rightarrow p = \sqrt {2mE} $---(iii)
The formula for de- Broglie wavelength of a moving body is given by
$\Rightarrow \lambda = \dfrac{h}{p}$---(iv)
Where ‘h’ is Planck’s constant
And ‘p’ is the momentum
Substituting the value of momentum from equation (iii) to (iv),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2mE} }}$
Substituting the value of E from equation (i),
$\Rightarrow \lambda = \dfrac{h}{{\sqrt {2meV} }}$
Substituting all the values in the above equation,
$\Rightarrow \lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{\sqrt {2 \times 1.6 \times {{10}^{ - 27}} \times 1000 \times 1.6 \times {{10}^{ - 27}}} }}$
Solving above equation, we get
$\Rightarrow \lambda = 0.9 \times {10^{ - 12}}m$
Option B is the right answer.
Note: It is important to note that the de- Broglie equation is used to define the wave properties of matter. The particle and the wave nature of the matter are complementary to each other but it is not mandatory that both of them are present at the same time. The de- Broglie equation is more useful for microscopic particles.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

