
The coordinate of the foot of the perpendicular from $({x_1},{y_1})$ to the line $ax + by + c = 0$ are.
A) $\left( {\dfrac{{{b^2}{x_1} - ab{y_1} - ac}}{{{a^2} + {b^2}}},\dfrac{{{b^2}{y_1} - ab{x_1} - bc}}{{{a^2} + {b^2}}}} \right)$
B) $\left( {\dfrac{{{b^2}{x_1} + ab{y_1} + ac}}{{{a^2} + {b^2}}},\dfrac{{{a^2}{y_1} + ab{x_1} + bc}}{{{a^2} + {b^2}}}} \right)$
C) $\left( {\dfrac{{a{x_1} + b{y_1} + ab}}{{a + b}},\dfrac{{a{x_1} - b{y_1} - ab}}{{a + b}}} \right)$
D) None
Answer
162.6k+ views
Hint:The point on a triangle’s leg, opposite a certain vertex where the perpendicular that passes through that vertex crosses the side is known as the perpendicular foot or foot of an altitude. For the given, firstly find the slope of that particular line and then use the condition for perpendicular lines’ slopes i.e., ${m_1}{m_2} = - 1$.
Formula Used: We have the equation of line $ax + by + c = 0$ . To find the perpendicular distance from the given point $({x_1},{y_1})$ we have,
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
Complete step by step Solution:
We have the equation of line $ax + by + c = 0$ . To find the perpendicular distance from the given point $({x_1},{y_1})$ we have,
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
To find the coordinates of the foot of the perpendicular from the point $({x_1},{y_1})$ to the line $ax + by + c = 0$ , we have
$\dfrac{{h - {x_1}}}{a} = \dfrac{{k - {y_1}}}{b} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
Solving this equation to find the value of $h$, we get
$\dfrac{{h - {x_1}}}{a} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
$ \Rightarrow h = \left( {\dfrac{{{b^2}{x_1} - ab{y_1} - ac}}{{{a^2} + {b^2}}}} \right)$
Similarly, to find $k$, we take
$\dfrac{{k - {y_1}}}{b} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
$ \Rightarrow k = \dfrac{{{b^2}{y_1} - ab{x_1} - bc}}{{{a^2} + {b^2}}}$
Therefore, we have the coordinates of the foot of the perpendicular
$\left( {\dfrac{{{b^2}{x_1} - ab{y_1} - ac}}{{{a^2} + {b^2}}},\dfrac{{{b^2}{y_1} - ab{x_1} - bc}}{{{a^2} + {b^2}}}} \right)$
Therefore, the correct option is (A).
Note: If we have two equation of lines $y = {m_1}x + {c_1}$ and ${y_2} = {m_2}x + {c_2}$ which are at an angle ${90^\circ }$ i.e., perpendicular to one another, then the relation between the slopes of these two lines is given as ${m_1}{m_2} = - 1$ . This relation is also used to find whether the given lines are perpendicular or not, hence this relation is called the condition for perpendicularity.
Formula Used: We have the equation of line $ax + by + c = 0$ . To find the perpendicular distance from the given point $({x_1},{y_1})$ we have,
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
Complete step by step Solution:
We have the equation of line $ax + by + c = 0$ . To find the perpendicular distance from the given point $({x_1},{y_1})$ we have,
$d = \left| {\dfrac{{a{x_1} + b{y_1} + c}}{{\sqrt {{a^2} + {b^2}} }}} \right|$
To find the coordinates of the foot of the perpendicular from the point $({x_1},{y_1})$ to the line $ax + by + c = 0$ , we have
$\dfrac{{h - {x_1}}}{a} = \dfrac{{k - {y_1}}}{b} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
Solving this equation to find the value of $h$, we get
$\dfrac{{h - {x_1}}}{a} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
$ \Rightarrow h = \left( {\dfrac{{{b^2}{x_1} - ab{y_1} - ac}}{{{a^2} + {b^2}}}} \right)$
Similarly, to find $k$, we take
$\dfrac{{k - {y_1}}}{b} = \dfrac{{ - a{x_1} + b{y_1} + c}}{{{a^2} + {b^2}}}$
$ \Rightarrow k = \dfrac{{{b^2}{y_1} - ab{x_1} - bc}}{{{a^2} + {b^2}}}$
Therefore, we have the coordinates of the foot of the perpendicular
$\left( {\dfrac{{{b^2}{x_1} - ab{y_1} - ac}}{{{a^2} + {b^2}}},\dfrac{{{b^2}{y_1} - ab{x_1} - bc}}{{{a^2} + {b^2}}}} \right)$
Therefore, the correct option is (A).
Note: If we have two equation of lines $y = {m_1}x + {c_1}$ and ${y_2} = {m_2}x + {c_2}$ which are at an angle ${90^\circ }$ i.e., perpendicular to one another, then the relation between the slopes of these two lines is given as ${m_1}{m_2} = - 1$ . This relation is also used to find whether the given lines are perpendicular or not, hence this relation is called the condition for perpendicularity.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
