
The area of a triangle formed by the lines $x = 0,y = 0$ and $3x + 4y = 12$ is
A. $12$
B. $6$
C. $2$
D. None of these
Answer
217.8k+ views
Hint: Find all the vertices of the triangle. There are three vertices, one is on the $x$-axis, another one is on the $y$-axis and the third one is the origin. Find the length and height of the triangle is right-angled. So, simply obtain the area using the formula of finding the area of a triangle using its base and height.
Formula Used:
Area of a triangle is obtained by the formula $\dfrac{1}{2} \times base \times height$.
Complete step by step solution:
The given straight lines are $x = 0,y = 0$ and $3x + 4y = 12$
The straight line $x = 0$ represents $y$-axis.
The straight line $y = 0$ represents $x$-axis
So, one vertex of the triangle is at origin.
Find the other two vertices
Coordinate of any point on $x$-axis is of the form $\left( {a,0} \right)$.
So, putting $x = a$ and $y = 0$ in the equation $3x + 4y = 12$, we get $3a + 4 \times 0 = 12$
Find the value of $a$
$3a + 0 = 12\\ \Rightarrow 3a = 12\\ \Rightarrow a = \dfrac{{12}}{3}\\ \Rightarrow a = 4$
So, the line $3x + 4y = 12$ meets $x$-axis at the point $A\left( {4,0} \right)$
Coordinate of any point on $y$-axis is of the form $\left( {0,b} \right)$.
So, putting $x = 0$ and $y = b$ in the equation $3x + 4y = 12$, we get $3 \times 0 + 4b = 12$
Find the value of $b$
$ \Rightarrow 0 + 4b = 12\\ \Rightarrow 4b = 12\\ \Rightarrow b = \dfrac{{12}}{4}\\ \Rightarrow b = 3$
So, the line $3x + 4y = 12$ meets $y$-axis at the point $B\left( {0,3} \right)$
$\therefore $ All three vertices of the triangle are $O\left( {0,0} \right),A\left( {4,0} \right)$ and $B\left( {0,3} \right)$.
The length of base of the triangle is $OA = 4$ units
and the length of height of the triangle is $OB = 3$ units.
So, the area of the triangle is $\dfrac{1}{2} \times OA \times OB = \dfrac{1}{2} \times 4 \times 3 = 6$ square units.
Option ‘B’ is correct
Note: The set of axes meet at origin. So, clearly, origin is one vertex of the given triangle. The ordinate i.e. the $y$-value of each point on $x$-axis is equal to zero and the abscissa i.e. the $x$-value of each point on $y$-axis is equal to zero.
Formula Used:
Area of a triangle is obtained by the formula $\dfrac{1}{2} \times base \times height$.
Complete step by step solution:
The given straight lines are $x = 0,y = 0$ and $3x + 4y = 12$
The straight line $x = 0$ represents $y$-axis.
The straight line $y = 0$ represents $x$-axis
So, one vertex of the triangle is at origin.
Find the other two vertices
Coordinate of any point on $x$-axis is of the form $\left( {a,0} \right)$.
So, putting $x = a$ and $y = 0$ in the equation $3x + 4y = 12$, we get $3a + 4 \times 0 = 12$
Find the value of $a$
$3a + 0 = 12\\ \Rightarrow 3a = 12\\ \Rightarrow a = \dfrac{{12}}{3}\\ \Rightarrow a = 4$
So, the line $3x + 4y = 12$ meets $x$-axis at the point $A\left( {4,0} \right)$
Coordinate of any point on $y$-axis is of the form $\left( {0,b} \right)$.
So, putting $x = 0$ and $y = b$ in the equation $3x + 4y = 12$, we get $3 \times 0 + 4b = 12$
Find the value of $b$
$ \Rightarrow 0 + 4b = 12\\ \Rightarrow 4b = 12\\ \Rightarrow b = \dfrac{{12}}{4}\\ \Rightarrow b = 3$
So, the line $3x + 4y = 12$ meets $y$-axis at the point $B\left( {0,3} \right)$
$\therefore $ All three vertices of the triangle are $O\left( {0,0} \right),A\left( {4,0} \right)$ and $B\left( {0,3} \right)$.
The length of base of the triangle is $OA = 4$ units
and the length of height of the triangle is $OB = 3$ units.
So, the area of the triangle is $\dfrac{1}{2} \times OA \times OB = \dfrac{1}{2} \times 4 \times 3 = 6$ square units.
Option ‘B’ is correct
Note: The set of axes meet at origin. So, clearly, origin is one vertex of the given triangle. The ordinate i.e. the $y$-value of each point on $x$-axis is equal to zero and the abscissa i.e. the $x$-value of each point on $y$-axis is equal to zero.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Convex and Concave Lenses Explained: Uses, Differences & Diagrams

Coulomb's Law: Definition, Formula, and Examples

De Broglie Equation Explained: Formula, Derivation & Uses

Differentiation in Kinematics: Concepts & Examples Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

