
Let $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$. If mean and variance of elements of $Y$ are $17$ and $216$ respectively. Then what is the value of $a + b$?
A. $27$
B. 7
C. $ - 7$
D. 9
Answer
164.1k+ views
Hint: First, use the definitions of the set and calculate the elements of the set. Then use formulas of the mean and variance to calculate the mean and variance of the set $Y$. In the end, solve both equations to reach the required answer.
Formula Used:
For a data set $\left\{ {{x_1},{x_2},{x_3},{x_4},.....{x_n}} \right\}$:
Mean: $\mu = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$
Variance: ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step by step solution:
The given definitions of sets are $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$.
The mean and variance of a set $Y$ are $17$ and $216$ respectively
Let’s get the elements of the given sets.
$X = \left\{ {1,2,3,...,17} \right\}$
$Y = \left\{ {a + b, 2a + b,3a + b,...,17a + b} \right\}$
Now apply the formula of mean for the set $Y$.
$\mu = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax + b} \right)} }}{{17}}$
$ \Rightarrow 17 = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax} \right) + \sum\limits_{x = 1}^{17} {\left( b \right)} } }}{{17}}$
$ \Rightarrow 17 = \dfrac{{a\sum\limits_{x = 1}^{17} {\left( x \right) + b\sum\limits_{x = 1}^{17} {\left( 1 \right)} } }}{{17}}$
Now use the formula of the sum of natural numbers
$17 = \dfrac{{a\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 17b}}{{17}}$ [ Since $\sum\limits_{n = 1}^n 1 = n$]
$ \Rightarrow 9a + b = 17$
$ \Rightarrow b - 17 = - 9a$ $.....\left( 1 \right)$
Now apply the formula of mean for the set $Y$.
${\sigma ^2} = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax + b - 17} \right)}^2}} }}{{17}}$
Substitute the values in the above equation.
$216 = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax - 9a} \right)}^2}} }}{{17}}$ [ Since $b - 17 = - 9a$]
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}{{\left( {x - 9} \right)}^2}} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}\left( {{x^2} - 18x + 81} \right)} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{{a^2}\sum\limits_{x = 1}^{17} {{x^2} - 18{a^2}\sum\limits_{x = 1}^{17} x + 81{a^2}\sum\limits_{x = 1}^{17} 1 } }}{{17}}$
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$ \Rightarrow 216 = \dfrac{{{a^2}\left( {\dfrac{{17\left( {18} \right)\left( {35} \right)}}{6}} \right) - 18{a^2}\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 81{a^2}\left( {17} \right)}}{{17}}$
$ \Rightarrow 216 = {a^2}\left( {3\left( {35} \right)} \right) - 18{a^2}\left( 9 \right) + 81{a^2}$
$ \Rightarrow 216 = 105{a^2} - 162{a^2} + 81{a^2}$
$ \Rightarrow 216 = 24{a^2}$
Divide both sides by $24$.
${a^2} = 9$
Take square roots on both sides.
$a = \pm 3$
Since $a > 0$.
So, the only possible value is $a = 3$.
Now substitute $a = 3$ in the equation $\left( 1 \right)$.
$b - 17 = - 9\left( 3 \right)$
$ \Rightarrow b = - 27 + 17$
$ \Rightarrow b = - 10$
Therefore,
$a + b = 3 + \left( { - 10} \right)$
$ \Rightarrow a + b = - 7$
Option ‘C’ is correct
Note: Students often get confused with the formulas of the standard deviation and variance. The formula of standard deviation is $\sigma = \sqrt {\dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}} $ and the formula of the variance is ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$.
Formula Used:
For a data set $\left\{ {{x_1},{x_2},{x_3},{x_4},.....{x_n}} \right\}$:
Mean: $\mu = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$
Variance: ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step by step solution:
The given definitions of sets are $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$.
The mean and variance of a set $Y$ are $17$ and $216$ respectively
Let’s get the elements of the given sets.
$X = \left\{ {1,2,3,...,17} \right\}$
$Y = \left\{ {a + b, 2a + b,3a + b,...,17a + b} \right\}$
Now apply the formula of mean for the set $Y$.
$\mu = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax + b} \right)} }}{{17}}$
$ \Rightarrow 17 = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax} \right) + \sum\limits_{x = 1}^{17} {\left( b \right)} } }}{{17}}$
$ \Rightarrow 17 = \dfrac{{a\sum\limits_{x = 1}^{17} {\left( x \right) + b\sum\limits_{x = 1}^{17} {\left( 1 \right)} } }}{{17}}$
Now use the formula of the sum of natural numbers
$17 = \dfrac{{a\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 17b}}{{17}}$ [ Since $\sum\limits_{n = 1}^n 1 = n$]
$ \Rightarrow 9a + b = 17$
$ \Rightarrow b - 17 = - 9a$ $.....\left( 1 \right)$
Now apply the formula of mean for the set $Y$.
${\sigma ^2} = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax + b - 17} \right)}^2}} }}{{17}}$
Substitute the values in the above equation.
$216 = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax - 9a} \right)}^2}} }}{{17}}$ [ Since $b - 17 = - 9a$]
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}{{\left( {x - 9} \right)}^2}} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}\left( {{x^2} - 18x + 81} \right)} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{{a^2}\sum\limits_{x = 1}^{17} {{x^2} - 18{a^2}\sum\limits_{x = 1}^{17} x + 81{a^2}\sum\limits_{x = 1}^{17} 1 } }}{{17}}$
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$ \Rightarrow 216 = \dfrac{{{a^2}\left( {\dfrac{{17\left( {18} \right)\left( {35} \right)}}{6}} \right) - 18{a^2}\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 81{a^2}\left( {17} \right)}}{{17}}$
$ \Rightarrow 216 = {a^2}\left( {3\left( {35} \right)} \right) - 18{a^2}\left( 9 \right) + 81{a^2}$
$ \Rightarrow 216 = 105{a^2} - 162{a^2} + 81{a^2}$
$ \Rightarrow 216 = 24{a^2}$
Divide both sides by $24$.
${a^2} = 9$
Take square roots on both sides.
$a = \pm 3$
Since $a > 0$.
So, the only possible value is $a = 3$.
Now substitute $a = 3$ in the equation $\left( 1 \right)$.
$b - 17 = - 9\left( 3 \right)$
$ \Rightarrow b = - 27 + 17$
$ \Rightarrow b = - 10$
Therefore,
$a + b = 3 + \left( { - 10} \right)$
$ \Rightarrow a + b = - 7$
Option ‘C’ is correct
Note: Students often get confused with the formulas of the standard deviation and variance. The formula of standard deviation is $\sigma = \sqrt {\dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}} $ and the formula of the variance is ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

IIT JEE Main Chemistry 2025: Syllabus, Important Chapters, Weightage

JEE Main Maths Question Paper PDF Download with Answer Key

JEE Main 2025 Session 2 City Intimation Slip Released - Download Link

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
