
Let $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$. If mean and variance of elements of $Y$ are $17$ and $216$ respectively. Then what is the value of $a + b$?
A. $27$
B. 7
C. $ - 7$
D. 9
Answer
219k+ views
Hint: First, use the definitions of the set and calculate the elements of the set. Then use formulas of the mean and variance to calculate the mean and variance of the set $Y$. In the end, solve both equations to reach the required answer.
Formula Used:
For a data set $\left\{ {{x_1},{x_2},{x_3},{x_4},.....{x_n}} \right\}$:
Mean: $\mu = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$
Variance: ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step by step solution:
The given definitions of sets are $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$.
The mean and variance of a set $Y$ are $17$ and $216$ respectively
Let’s get the elements of the given sets.
$X = \left\{ {1,2,3,...,17} \right\}$
$Y = \left\{ {a + b, 2a + b,3a + b,...,17a + b} \right\}$
Now apply the formula of mean for the set $Y$.
$\mu = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax + b} \right)} }}{{17}}$
$ \Rightarrow 17 = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax} \right) + \sum\limits_{x = 1}^{17} {\left( b \right)} } }}{{17}}$
$ \Rightarrow 17 = \dfrac{{a\sum\limits_{x = 1}^{17} {\left( x \right) + b\sum\limits_{x = 1}^{17} {\left( 1 \right)} } }}{{17}}$
Now use the formula of the sum of natural numbers
$17 = \dfrac{{a\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 17b}}{{17}}$ [ Since $\sum\limits_{n = 1}^n 1 = n$]
$ \Rightarrow 9a + b = 17$
$ \Rightarrow b - 17 = - 9a$ $.....\left( 1 \right)$
Now apply the formula of mean for the set $Y$.
${\sigma ^2} = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax + b - 17} \right)}^2}} }}{{17}}$
Substitute the values in the above equation.
$216 = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax - 9a} \right)}^2}} }}{{17}}$ [ Since $b - 17 = - 9a$]
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}{{\left( {x - 9} \right)}^2}} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}\left( {{x^2} - 18x + 81} \right)} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{{a^2}\sum\limits_{x = 1}^{17} {{x^2} - 18{a^2}\sum\limits_{x = 1}^{17} x + 81{a^2}\sum\limits_{x = 1}^{17} 1 } }}{{17}}$
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$ \Rightarrow 216 = \dfrac{{{a^2}\left( {\dfrac{{17\left( {18} \right)\left( {35} \right)}}{6}} \right) - 18{a^2}\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 81{a^2}\left( {17} \right)}}{{17}}$
$ \Rightarrow 216 = {a^2}\left( {3\left( {35} \right)} \right) - 18{a^2}\left( 9 \right) + 81{a^2}$
$ \Rightarrow 216 = 105{a^2} - 162{a^2} + 81{a^2}$
$ \Rightarrow 216 = 24{a^2}$
Divide both sides by $24$.
${a^2} = 9$
Take square roots on both sides.
$a = \pm 3$
Since $a > 0$.
So, the only possible value is $a = 3$.
Now substitute $a = 3$ in the equation $\left( 1 \right)$.
$b - 17 = - 9\left( 3 \right)$
$ \Rightarrow b = - 27 + 17$
$ \Rightarrow b = - 10$
Therefore,
$a + b = 3 + \left( { - 10} \right)$
$ \Rightarrow a + b = - 7$
Option ‘C’ is correct
Note: Students often get confused with the formulas of the standard deviation and variance. The formula of standard deviation is $\sigma = \sqrt {\dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}} $ and the formula of the variance is ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$.
Formula Used:
For a data set $\left\{ {{x_1},{x_2},{x_3},{x_4},.....{x_n}} \right\}$:
Mean: $\mu = \dfrac{{\sum\limits_{i = 1}^n {{x_i}} }}{n}$
Variance: ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$
The sum of natural numbers: $\sum\limits_{i = 1}^n i = \dfrac{{n\left( {n + 1} \right)}}{2}$
The sum of squares of natural numbers: $\sum\limits_{i = 1}^n {{i^2}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}$
Complete step by step solution:
The given definitions of sets are $X = \left\{ {x \in N:1 \le x \le 17} \right\}$, and $Y = \left\{ {ax + b: x \in X and a,b \in R, a > 0} \right\}$.
The mean and variance of a set $Y$ are $17$ and $216$ respectively
Let’s get the elements of the given sets.
$X = \left\{ {1,2,3,...,17} \right\}$
$Y = \left\{ {a + b, 2a + b,3a + b,...,17a + b} \right\}$
Now apply the formula of mean for the set $Y$.
$\mu = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax + b} \right)} }}{{17}}$
$ \Rightarrow 17 = \dfrac{{\sum\limits_{x = 1}^{17} {\left( {ax} \right) + \sum\limits_{x = 1}^{17} {\left( b \right)} } }}{{17}}$
$ \Rightarrow 17 = \dfrac{{a\sum\limits_{x = 1}^{17} {\left( x \right) + b\sum\limits_{x = 1}^{17} {\left( 1 \right)} } }}{{17}}$
Now use the formula of the sum of natural numbers
$17 = \dfrac{{a\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 17b}}{{17}}$ [ Since $\sum\limits_{n = 1}^n 1 = n$]
$ \Rightarrow 9a + b = 17$
$ \Rightarrow b - 17 = - 9a$ $.....\left( 1 \right)$
Now apply the formula of mean for the set $Y$.
${\sigma ^2} = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax + b - 17} \right)}^2}} }}{{17}}$
Substitute the values in the above equation.
$216 = \dfrac{{\sum\limits_{x = 1}^{17} {{{\left( {ax - 9a} \right)}^2}} }}{{17}}$ [ Since $b - 17 = - 9a$]
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}{{\left( {x - 9} \right)}^2}} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{\sum\limits_{x = 1}^{17} {{a^2}\left( {{x^2} - 18x + 81} \right)} }}{{17}}$
$ \Rightarrow 216 = \dfrac{{{a^2}\sum\limits_{x = 1}^{17} {{x^2} - 18{a^2}\sum\limits_{x = 1}^{17} x + 81{a^2}\sum\limits_{x = 1}^{17} 1 } }}{{17}}$
Now use the formulas of the sum of natural numbers and sum of squares of natural numbers.
$ \Rightarrow 216 = \dfrac{{{a^2}\left( {\dfrac{{17\left( {18} \right)\left( {35} \right)}}{6}} \right) - 18{a^2}\left( {\dfrac{{17\left( {18} \right)}}{2}} \right) + 81{a^2}\left( {17} \right)}}{{17}}$
$ \Rightarrow 216 = {a^2}\left( {3\left( {35} \right)} \right) - 18{a^2}\left( 9 \right) + 81{a^2}$
$ \Rightarrow 216 = 105{a^2} - 162{a^2} + 81{a^2}$
$ \Rightarrow 216 = 24{a^2}$
Divide both sides by $24$.
${a^2} = 9$
Take square roots on both sides.
$a = \pm 3$
Since $a > 0$.
So, the only possible value is $a = 3$.
Now substitute $a = 3$ in the equation $\left( 1 \right)$.
$b - 17 = - 9\left( 3 \right)$
$ \Rightarrow b = - 27 + 17$
$ \Rightarrow b = - 10$
Therefore,
$a + b = 3 + \left( { - 10} \right)$
$ \Rightarrow a + b = - 7$
Option ‘C’ is correct
Note: Students often get confused with the formulas of the standard deviation and variance. The formula of standard deviation is $\sigma = \sqrt {\dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}} $ and the formula of the variance is ${\sigma ^2} = \dfrac{{\sum\limits_{i = 1}^n {{{\left( {{x_i} - \mu } \right)}^2}} }}{n}$.
Recently Updated Pages
The angle of depression of the top and the bottom of class 10 maths JEE_Main

Find the value of sin 50 circ sin 70 circ + sin 10 class 10 maths JEE_Main

The amount of work in a leather factory is increased class 10 maths JEE_Main

The side BC of a triangle ABC is bisected at D O is class 10 maths JEE_Main

The circumference of the base of a 24 m high conical class 10 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main Previous Year Question Papers (2014–2025) with Answer Keys and Solutions

Exothermic Reactions: Real-Life Examples, Equations, and Uses

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Understanding Newton’s Laws of Motion

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 15 Probability

