
In the given figure, the electron enters into the magnetic field. It deflects in ……direction.
A.$(+)ve$$X-$direction
B.$(-)ve$ $X-$direction
C.$(+)ve$$Y-$direction
D.$(-)ve$$Y-$direction
Answer
233.1k+ views
Hint: In the given figure the electron is moving along a positive $x-$direction. And the conventional current moves in the negative $x-$direction. Therefore the deflection of electrons can be determined by Fleming’s left-hand thumb rule.
Complete answer:
In a uniform magnetic field, the magnetic force is always at right angles to the motion of the electron and as a result, the path of the electron in a uniform magnetic field is circular. The magnetic force acting on a charged particle is given by Fleming’s left-hand thumb rule.

Here the direction of the moving electron is along the positive $x-$direction and the direction of the current is along the negative $x-$direction. This is because the direction of conventional current is opposite to the direction of the flow of electrons. Now, according to Fleming’s left-hand thumb rule, the positively charged particle will be deflected in a positive $y-$direction.
But the electron is a negatively charged particle, so it will be reflected in a negative $y-$direction as it feels a force in this direction.
Thus, option (D) is correct.
Additional information: If the magnetic field and velocity are parallel to each other then the charged particle does not experience any magnetic force. Therefore the magnitude of force remains constant in the entire motion if no magnetic field is felt upon it.
Note:when a moving conductor is placed in a magnetic field, a current will be induced in it. The direction of the induced current can be determined by Fleming’s right-hand thumb rule. But when a current carrying is placed in a magnetic field, a magnetic force applies to it, the direction of magnetic force can be determined by Fleming’s left-hand thumb rule.
Complete answer:
In a uniform magnetic field, the magnetic force is always at right angles to the motion of the electron and as a result, the path of the electron in a uniform magnetic field is circular. The magnetic force acting on a charged particle is given by Fleming’s left-hand thumb rule.

Here the direction of the moving electron is along the positive $x-$direction and the direction of the current is along the negative $x-$direction. This is because the direction of conventional current is opposite to the direction of the flow of electrons. Now, according to Fleming’s left-hand thumb rule, the positively charged particle will be deflected in a positive $y-$direction.
But the electron is a negatively charged particle, so it will be reflected in a negative $y-$direction as it feels a force in this direction.
Thus, option (D) is correct.
Additional information: If the magnetic field and velocity are parallel to each other then the charged particle does not experience any magnetic force. Therefore the magnitude of force remains constant in the entire motion if no magnetic field is felt upon it.
Note:when a moving conductor is placed in a magnetic field, a current will be induced in it. The direction of the induced current can be determined by Fleming’s right-hand thumb rule. But when a current carrying is placed in a magnetic field, a magnetic force applies to it, the direction of magnetic force can be determined by Fleming’s left-hand thumb rule.
Recently Updated Pages
JEE Main Course 2026 - Important Updates and Details

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

Chemistry Question Pattern for JEE Main & Board Exams

Chemistry Question Paper PDF Download (2025, 2024) with Solutions

JEE Main Books 2026: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

