
In an L-C-R circuit the value of ${X_L}$ , ${X_C}$ and $R$ are $300\Omega $ , $200\Omega $ and $100\Omega $ respectively. The total impedance of the circuit will be
(A) $600\Omega $
(B) $200\Omega $
(C) $141\Omega $
(D) $310\Omega $
Answer
216.3k+ views
Hint: - At resonance the capacitive reactance and inductive reactance are equal. At above the resonant frequency the inductive reactance will be greater than the capacitive reactance. So the RLC circuit operating above resonant frequency behaves as a purely inductive circuit. The phase difference between the current and voltage will be equal in this circuit as the inductive circuit.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

