
In an L-C-R circuit the value of ${X_L}$ , ${X_C}$ and $R$ are $300\Omega $ , $200\Omega $ and $100\Omega $ respectively. The total impedance of the circuit will be
(A) $600\Omega $
(B) $200\Omega $
(C) $141\Omega $
(D) $310\Omega $
Answer
233.1k+ views
Hint: - At resonance the capacitive reactance and inductive reactance are equal. At above the resonant frequency the inductive reactance will be greater than the capacitive reactance. So the RLC circuit operating above resonant frequency behaves as a purely inductive circuit. The phase difference between the current and voltage will be equal in this circuit as the inductive circuit.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Formula used:
The formula for the impedance in the LCR circuit,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
where $Z$ = impedance
$R$ = resistance
${X_L}$ = Inductive reactance
${X_C}$ = Capacitive Reactance
Complete step-by-step solution:
Given,
The value of the resistor in the RLC circuit is $100\Omega $ ,
The value of Inductive reactance in the RLC circuit is $300\Omega $ ,
The value of Capacitive reactance in the RLC circuit is $200\Omega $ .
Since, For a series LCR circuit, the impedance is given by the formula,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Substitute the value of $R$ , ${X_L}$ and ${X_C}$ in the above equation we get,
$Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {300 - 200} \right)}^2}} $
$ \Rightarrow Z = \sqrt {{{\left( {100} \right)}^2} + {{\left( {100} \right)}^2}} $
On further solving the equation we get,
$Z = \sqrt {2{{\left( {100} \right)}^2}} = 100\sqrt 2 $
$ \Rightarrow Z = 141.42 \simeq 141\Omega $
And so the total impedance of the circuit is $141\Omega $ .
Hence, the correct answer is option is (C).
Additional information: In the LCR circuits when the ${X_L} \succ {X_C}$ , then the circuit is termed as Inductive circuit and similarly when the ${X_C} \succ {X_L}$ then the corresponding circuits are termed as Capacitive circuit. Always remember that the voltages in a series RLC circuit are actually phasors which are treated as vectors, so the net emf is obtained as a vector addition of three voltages given.
Note: The series resonance or the series LCR circuits are one of the most significant circuits. They have a vast number of practical uses starting from AC mains filters, radios, and also in television circuits. We have to remember all the formulas used and understand the meaning of the terms such as impedance and reactance, then this type of question will be solved easily.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

