
If \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}} = \]
A. \[{\left( {\dfrac{y}{3}} \right)^{\dfrac{1}{3}}}\]
B. \[{\left( { - \dfrac{y}{x}} \right)^{\dfrac{1}{3}}}\]
C. \[{\left( {\dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
D. \[{\left( { - \dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
Answer
164.7k+ views
Hint: In this question, we try to form the indices formula for the value \[\dfrac{2}{3}\] and take the indices of the form of \[{x^{\dfrac{2}{3}}},{y^{\dfrac{2}{3}}},{a^{\dfrac{2}{3}}}\] then we take the individual differentiation of the function then substitute it into the original function and simplified it to get the desired result.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
