
If \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}} = \]
A. \[{\left( {\dfrac{y}{3}} \right)^{\dfrac{1}{3}}}\]
B. \[{\left( { - \dfrac{y}{x}} \right)^{\dfrac{1}{3}}}\]
C. \[{\left( {\dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
D. \[{\left( { - \dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
Answer
232.8k+ views
Hint: In this question, we try to form the indices formula for the value \[\dfrac{2}{3}\] and take the indices of the form of \[{x^{\dfrac{2}{3}}},{y^{\dfrac{2}{3}}},{a^{\dfrac{2}{3}}}\] then we take the individual differentiation of the function then substitute it into the original function and simplified it to get the desired result.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

