
If \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}} = \]
A. \[{\left( {\dfrac{y}{3}} \right)^{\dfrac{1}{3}}}\]
B. \[{\left( { - \dfrac{y}{x}} \right)^{\dfrac{1}{3}}}\]
C. \[{\left( {\dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
D. \[{\left( { - \dfrac{x}{y}} \right)^{\dfrac{1}{3}}}\]
Answer
221.1k+ views
Hint: In this question, we try to form the indices formula for the value \[\dfrac{2}{3}\] and take the indices of the form of \[{x^{\dfrac{2}{3}}},{y^{\dfrac{2}{3}}},{a^{\dfrac{2}{3}}}\] then we take the individual differentiation of the function then substitute it into the original function and simplified it to get the desired result.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Formula used:
We have been using the following formula to find the derivative:
1. \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step-by-step solution:
We are given that \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}...\left( 1 \right)\]
We know the given function is in cube root forms and the given values are in the form of indices.
Now we find the individual differentiation of the given function
So,
\[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)...\left( 2 \right)\]
Now we use the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we have
First, we take derivative of \[\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} \\
= \dfrac{2}{3}\,{x^{\dfrac{{2 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{ - \dfrac{1}{3}}}...\left( 3 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{y^{\dfrac{2}{3}}}} \right) = \dfrac{2}{3}{y^{\dfrac{2}{3} - 1}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{\dfrac{{2 - 3}}{3}}}\dfrac{{dy}}{{dx}} \\
= \dfrac{2}{3}\,{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}...\left( 4 \right) \\
\]
Now we take the derivative of \[\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right)\], we get
\[
\dfrac{d}{{dx}}\left( {{a^{\dfrac{2}{3}}}} \right) = 0..\left( 5 \right)
\] (because a is constant)
Now we substitute equation (3), (4), (5) in equation (1), we get
\[
\dfrac{2}{3}{x^{ - \dfrac{1}{3}}} + \dfrac{2}{3}{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
\dfrac{2}{3}\left[ {{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}}} \right] = 0 \\
{x^{ - \dfrac{1}{3}}} + {y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = 0 \\
{y^{ - \dfrac{1}{3}}}\dfrac{{dy}}{{dx}} = - {x^{ - \dfrac{1}{3}}} \\
\]
Further simplifying, we get
\[
\dfrac{{dy}}{{dx}} = \dfrac{{ - {x^{ - \dfrac{1}{3}}}}}{{{y^{ - \dfrac{1}{3}}}}} \\
= \dfrac{{ - \dfrac{1}{{{x^{\dfrac{1}{3}}}}}}}{{\dfrac{1}{{{y^{\dfrac{1}{3}}}}}}} \\
= - \dfrac{1}{{{x^{\dfrac{1}{3}}}}} \times \dfrac{{{y^{\dfrac{1}{3}}}}}{1} \\
= - \dfrac{{{y^{\dfrac{1}{3}}}}}{{{x^{\dfrac{1}{3}}}}} \\
= {\left[ { - \dfrac{y}{x}} \right]^{\dfrac{1}{3}}}
\]
Therefore, if \[{x^{\dfrac{2}{3}}} + {y^{\dfrac{2}{3}}} = {a^{\dfrac{2}{3}}}\] then \[\dfrac{{dy}}{{dx}}\]is \[{\left[ {\dfrac{{ - y}}{x}} \right]^{\dfrac{1}{3}}}\].
Hence, option (B) is the correct answer
Note: Students must be careful when determining the derivative \[\dfrac{{dy}}{{dx}}\] because there is a chance that you will make a sign mistake. Also, be cautious when checking the options and substituting the values of \[\dfrac{{dy}}{{dx}}\]. The best way to answer this type of question is to go through each option one by one because it contains \[\dfrac{{dy}}{{dx}}\] terms that cannot be found otherwise.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Understanding How a Current Loop Acts as a Magnetic Dipole

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Amortization Calculator – Loan Schedule, EMI & Table

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Common Ion Effect: Concept, Applications, and Problem-Solving

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

