
If $y = {x^{{x^{x \cdots \infty }}}}$, then find $\dfrac{{dy}}{{dx}}$.
A. $y{x^{y - 1}}$
B. $\dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
C. $\dfrac{{{y^2}}}{{x\left( {1 + y\log x} \right)}}$
D. None of these
Answer
161.4k+ views
Hint: We will replace the power of $x$ by $y$. Then take the logarithm function on both sides of the equation. Then differentiate the equation with respect to $x$, to calculate $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
