
If $y = {x^{{x^{x \cdots \infty }}}}$, then find $\dfrac{{dy}}{{dx}}$.
A. $y{x^{y - 1}}$
B. $\dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
C. $\dfrac{{{y^2}}}{{x\left( {1 + y\log x} \right)}}$
D. None of these
Answer
219k+ views
Hint: We will replace the power of $x$ by $y$. Then take the logarithm function on both sides of the equation. Then differentiate the equation with respect to $x$, to calculate $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

