
If $y = {x^{{x^{x \cdots \infty }}}}$, then find $\dfrac{{dy}}{{dx}}$.
A. $y{x^{y - 1}}$
B. $\dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
C. $\dfrac{{{y^2}}}{{x\left( {1 + y\log x} \right)}}$
D. None of these
Answer
226.8k+ views
Hint: We will replace the power of $x$ by $y$. Then take the logarithm function on both sides of the equation. Then differentiate the equation with respect to $x$, to calculate $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Formula Used:
Logarithm rules:
$\log {a^m} = m\log a$
Derivative formula:
Logarithm rule: $\dfrac{d}{{dx}}\left( {\log x} \right) = \dfrac{1}{x}$
Product rule: $\dfrac{d}{{dx}}\left( {uv} \right) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
Given equation is $y = {x^{{x^{x \cdots \infty }}}}$.
Since the power of $x$ repeats infinite times.
Replace the power of $x$ by $y$.
$ \Rightarrow y = {x^y}$
Take the logarithm function on both sides of the equation
$ \Rightarrow \log y = \log {x^y}$
Apply the formula of power of logarithm function
$ \Rightarrow \log y = y\log x$
Differentiate both sides of the equation with respect to $x$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {y\log x} \right)$
Apply differentiate formulas
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( {\log x} \right)$
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \log x\dfrac{{dy}}{{dx}} + \dfrac{y}{x}$
Combine like terms
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} - \log x\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Take common $\dfrac{{dy}}{{dx}}$ from left side expression
$ \Rightarrow \left( {\dfrac{1}{y} - \log x} \right)\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Divided both sides by $\left( {\dfrac{1}{y} - \log x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{1}{y} - \log x} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{x\left( {\dfrac{{1 - y\log x}}{y}} \right)}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2}}}{{x\left( {1 - y\log x} \right)}}$
Option ‘B’ is correct
Note: This type of question belongs to the category of function to the function. To solve such a type of question, you need to take the logarithmic function on both sides of the equation and then differentiate both sides with respect to the x. By combining like terms we get the value of $\dfrac{{dy}}{{dx}}$.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Derivation of Equation of Trajectory Explained for Students

Understanding Average and RMS Value in Electrical Circuits

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

