
If \[{x^2} - hx - 21 = 0,{x^2} - 3hx + 35 = 0(h > 0)\] has a common root, then the value of \[h\] is equal to
A. 1
B. 2
C. 3
D. 4
Answer
163.2k+ views
Hint:
In our case, there is an equation in the question. The ratio of the variables in the generalized equation must be determined. They share a common root, which is the condition. Therefore, we must identify the discriminant in order to determine if the roots are made up or real. The ratio for the variables can then be determined by locating the common root.
Complete Step-By-Step Solution:
We are given two equations in the question
\[{x^2} - hx - 21 = 0\]------ (1)
\[{x^2} - 3hx + 35 = 0\]-------- (2)
And we have been given the condition that,
\[(h > 0)\]
Here, we have to determine the value of \[h\]
Now, let us subtract the given two equations, we have
\[\left( {{x^2} - hx - 21} \right) - \left( {{x^2} - 3hx + 35} \right) = 0\]
On subtracting the above two equations, we get
\[2hx = 56\]
Now, we have to calculate the value for \[hx\] we get
\[hx = 28\]
Now, we have to substitute the value of \[hx\] in first equation, we get
\[{x^2} - 28 - 21 = 0\]
Now, let us simplify the like terms, we get
\[{x^2} = 49\]
On taking square on both sides of the above equation, we get
\[x = \pm 7\]
It is already known that, we take only positive values for \[x\]
Since, the condition is
\[h > 0\]
Now, we have to substitute the value of \[x = 7\] in \[hx = 28\] we get
\[h(7) = 28\]
On solving for \[h\] we get
\[h = \frac{{28}}{7}\]
Now, on further simplification we obtain
\[h = 4\]
Therefore, If \[{x^2} - hx - 21 = 0,{x^2} - 3hx + 35 = 0(h > 0)\] has a common root, then the value of \[h\] is equal to \[h = 4\]
Hence, the option D is correct
Note:
Students often tend to make mistake in these types of problems, because here it is asked to determine the common root. Students should keep in mind that finding the discriminant is not specifically asked for in the question. The crucial phrase is "common root." We don't even have to look for the actual origins. Simply comparing the types of roots in two equations will do.
In our case, there is an equation in the question. The ratio of the variables in the generalized equation must be determined. They share a common root, which is the condition. Therefore, we must identify the discriminant in order to determine if the roots are made up or real. The ratio for the variables can then be determined by locating the common root.
Complete Step-By-Step Solution:
We are given two equations in the question
\[{x^2} - hx - 21 = 0\]------ (1)
\[{x^2} - 3hx + 35 = 0\]-------- (2)
And we have been given the condition that,
\[(h > 0)\]
Here, we have to determine the value of \[h\]
Now, let us subtract the given two equations, we have
\[\left( {{x^2} - hx - 21} \right) - \left( {{x^2} - 3hx + 35} \right) = 0\]
On subtracting the above two equations, we get
\[2hx = 56\]
Now, we have to calculate the value for \[hx\] we get
\[hx = 28\]
Now, we have to substitute the value of \[hx\] in first equation, we get
\[{x^2} - 28 - 21 = 0\]
Now, let us simplify the like terms, we get
\[{x^2} = 49\]
On taking square on both sides of the above equation, we get
\[x = \pm 7\]
It is already known that, we take only positive values for \[x\]
Since, the condition is
\[h > 0\]
Now, we have to substitute the value of \[x = 7\] in \[hx = 28\] we get
\[h(7) = 28\]
On solving for \[h\] we get
\[h = \frac{{28}}{7}\]
Now, on further simplification we obtain
\[h = 4\]
Therefore, If \[{x^2} - hx - 21 = 0,{x^2} - 3hx + 35 = 0(h > 0)\] has a common root, then the value of \[h\] is equal to \[h = 4\]
Hence, the option D is correct
Note:
Students often tend to make mistake in these types of problems, because here it is asked to determine the common root. Students should keep in mind that finding the discriminant is not specifically asked for in the question. The crucial phrase is "common root." We don't even have to look for the actual origins. Simply comparing the types of roots in two equations will do.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

IIT JEE Main Chemistry 2025: Syllabus, Important Chapters, Weightage

JEE Main Maths Question Paper PDF Download with Answer Key

JEE Main 2025 Session 2 City Intimation Slip Released - Download Link

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
